Journal of Statistical Physics

, Volume 159, Issue 2, pp 380–392 | Cite as

Lattice Integrals of Motion of the Ising Model on the Strip

  • Alessandro Nigro


We consider the 2D critical Ising model on a strip with fixed boundary conditions. It is shown that for a suitable reparametrization of the known Boltzmann weights the transfer matrix becomes a polynomial in the variable \(\csc (4u)\), being \(u\) the spectral parameter. The coefficients of this polynomial are decomposed on the fixed boundaries Temperley–Lieb Algebra by introducing a lattice version of the local integrals of motion.


Ising model Integrability Conformal field theory Temperley–Lieb algebra 



The author acknowledges financial support from Fondo Sociale Europeo (Regione Lombardia), through the grant Dote ricerca.


  1. 1.
    Nigro, A.: Integrals of motion for critical dense polymers and symplectic fermions. J. Stat. Mech. 2009, P10007 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Nigro, A.: Lattice integrals of motion of the ising model on the cylinder. Physica A, PHYSA14114, arXiv:1010.4426.
  3. 3.
    Bazanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Commun. Math. Phys. 177, 381–398 (1996)CrossRefADSGoogle Scholar
  4. 4.
    Koo, W.M., Saleur, H.: Representations of the Virasoro algebra from lattice models. Nucl. Phys. B426, 459–504 (1994)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Pearce, P., Rasmussen, J.: Solvable critical dense polymers. J. Stat. Mech. 0702, P02015 (2007)Google Scholar
  6. 6.
    O’Brien, D., Pearce, P., Waarnar, S.O.: Finitized conformal spectrum of the ising model on the cylinder and torus. Phys. A 228, 63 (1996)MathSciNetGoogle Scholar
  7. 7.
    Baxter, R.J.: Exactly Solved Models In Statistical Mechanics. Academic Press, New York (1982)MATHGoogle Scholar
  8. 8.
    A. Nigro, On the Integrable Structure of the Ising Model, J. Stat. Mech. (2008) P01017.Google Scholar
  9. 9.
    Behrend, R.E., Pearce, P.A., O’Brien, D.L.: Interaction-round-a-face models with fixed boundary conditions: the ABF fusion hierarchy. J. Stat. Phys. 84, 1–48 (1996). arXiv:hep-th/9507118 CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Feverati, G., Pearce, P.A.: Critical RSOS and minimal models I: paths, fermionic algebras and Virasoro modules. Nucl. Phys. B663, 409–442 (2003)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ginsparg, P.: “Applied conformal field theory”. In: Brézin, E., Zinn Justin, J. (eds.)Fields, Strings and Critical Phenomena, (Les Houches, Session XLIX, 1988), (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di Fisica and INFN- Sezione di MilanoUniversità degli Studi di Milano IMilanoItaly

Personalised recommendations