Advertisement

Journal of Statistical Physics

, Volume 158, Issue 3, pp 514–548 | Cite as

An Algorithmic Approach to Collective Behavior

  • Bernard Chazelle
Article

Abstract

The emergence of collective structure from the decentralized interaction of autonomous agents remains, with notable exceptions, a mystery. While powerful tools from dynamics and statistical mechanics have been brought to bear, sometimes with great success, an algorithmic perspective has been lacking. Viewing collective behavior through the lens of natural algorithms offers potential benefits. This article examines the merits and challenges of an algorithmic approach to the emergence of collective order.

Keywords

Collective behavior Natural algorithms Influence systems s-Energy Dynamic networks Renormalization 

Notes

Acknowledgments

I wish to thank the anonymous referees for many useful comments and suggestions. This work was supported in part by NSF Grants CCF-0832797, CCF-0963825, and CCF-1016250.

References

  1. 1.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331, 183–185 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, C.: The end of theory: the data deluge makes the scientific method obsolete. Wired Magazine, 23 June 2008Google Scholar
  3. 3.
    Anderson, P.W.: More is different. Science 177, 4047 (1972)CrossRefGoogle Scholar
  4. 4.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Bhattacharyya, A., Braverman, M., Chazelle, B., Nguyen, H.L.: On the convergence of the Hegselmann-Krause system. In: Proceedings of 4th ITCS, 2013Google Scholar
  6. 6.
    Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., Walczak, A.: Statistical mechanics for natural flocks of birds. Proc Natl. Acad. Sci. USA 109, 4786–4791 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: On Krause’s multi-agent consensus model with state-dependent connectivity. IEEE Trans. Autom. Control 54(11), 2586–2597 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bullo, F., Cortés, J., Martinez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, Princeton (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proceedings of 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 233–240 (2012)Google Scholar
  10. 10.
    Buzzi, J.: Piecewise isometries have zero topological entropy. Ergod. Theory Dyn. Syst. 21, 1371–1377 (2001)MATHMathSciNetGoogle Scholar
  11. 11.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)MATHGoogle Scholar
  12. 12.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scalefree correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865–11870 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Chazelle, B.: Natural algorithms. In: Proceedings of 20th SODA, pp. 422–431 (2009)Google Scholar
  15. 15.
    Chazelle, B.: The convergence of bird flocking. J. ACM 61, 21 (2014)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chazelle, B.: The total \(s\)-energy of a multiagent system. SIAM J. Control Optim. 49, 1680–1706 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Chazelle, B.: Natural algorithms and influence systems. CACM 55, 101–110 (2012)CrossRefGoogle Scholar
  18. 18.
    Chazelle, B.: The dynamics of influence systems. SIAM J. Comput. (2014). arXiv:1204.3946v2. Preliminary version in Proceedings of 53rd IEEE FOCS, 2012
  19. 19.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proceedings of 2nd GI Conference in Automata Theory and Formal Languages, pp. 134–183. Springer-Verlag, New York (1975)Google Scholar
  20. 20.
    Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003)CrossRefGoogle Scholar
  21. 21.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications to biology. In: DISC. Springer, Berlin (2012)Google Scholar
  23. 23.
    Fisher, J., Harel, D., Henzinger, T.A.: Biology as reactivity. Commun. ACM 54, 72–82 (2011)CrossRefGoogle Scholar
  24. 24.
    Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5, 3 (2002)Google Scholar
  25. 25.
    Hendrickx, J.M., Blondel, V.D.: Convergence of different linear and non-linear Vicsek models. In: Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS2006), Kyoto, Japan, July 2006, pp. 1229–1240.Google Scholar
  26. 26.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Proceedings of Communications in Difference Equations, pp. 227–236 (2000)Google Scholar
  28. 28.
    Kruglikov, B., Rypdal, M.: A piecewise affine contracting map with positive entropy. Discrete Continuous Dyn. Syst. 16(2), 393–394 (2006)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Lorenz, J.: A stabilization theorem for dynamics of continuous opinions. Phys. A 355, 217–223 (2005)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144, 268–302 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009)CrossRefMATHGoogle Scholar
  32. 32.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50, 169–182 (2005)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems biology and computational thinking. Mol. Syst. Biol. 7, 546 (2011)CrossRefGoogle Scholar
  34. 34.
    Okubo, A., Levin, S.A.: Diffusion and Ecological Problems. Modern Perspectives, 2nd edn. Springer, Berlin (2001)CrossRefGoogle Scholar
  35. 35.
    Olshevsky, A., Tsitsiklis, J.N.: On the nonexistence of quadratic Lyapunov functions for consensus algorithms. IEEE Trans. Autom. Control 53, 2642–2645 (2008)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)CrossRefGoogle Scholar
  37. 37.
    Seneta, E.: Non-negative Matrices and Markov Chains, 2nd edn. Springer, New York (2006)MATHGoogle Scholar
  38. 38.
    Sontag, E.D.: Nonlinear regulation: the piecewise linear approach. IEEE Trans. Automat. Control 26, 346–358 (1981)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations