Journal of Statistical Physics

, Volume 158, Issue 2, pp 300–358 | Cite as

Minimal Contagious Sets in Random Regular Graphs



The bootstrap percolation (or threshold model) is a dynamic process modelling the propagation of an epidemic on a graph, where inactive vertices become active if their number of active neighbours reach some threshold. We study an optimization problem related to it, namely the determination of the minimal number of active sites in an initial configuration that leads to the activation of the whole graph under this dynamics, with and without a constraint on the time needed for the complete activation. This problem encompasses in special cases many extremal characteristics of graphs like their independence, decycling or domination number, and can also be seen as a packing problem of repulsive particles. We use the cavity method (including the effects of replica symmetry breaking), an heuristic technique of statistical mechanics many predictions of which have been confirmed rigorously in the recent years. We have obtained in this way several quantitative conjectures on the size of minimal contagious sets in large random regular graphs, the most striking being that 5-regular random graph with a threshold of activation of 3 (resp. 6-regular with threshold 4) have contagious sets containing a fraction \(1/6\) (resp. \(1/4\)) of the total number of vertices. Equivalently these numbers are the minimal fraction of vertices that have to be removed from a 5-regular (resp. 6-regular) random graph to destroy its 3-core. We also investigated Survey Propagation like algorithmic procedures for solving this optimization problem on single instances of random regular graphs.


Bootstrap percolation Optimization problems Cavity method  Random graphs 



We warmly thank Fabrizio Altarelli, Victor Bapst, Alfredo Braunstein, Amin Coja-Oghlan, Luca Dall’Asta, Svante Janson, Marc Lelarge and Riccardo Zecchina for useful discussions, and in particular FA, AB, LDA and RZ for sharing with us the unpublished numerical results [10] on their maxsum algorithm, and SJ for a useful correspondence and for pointing out the reference [17]. The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-11-JS02-005-01 (GAP project) and of the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No 290038.


  1. 1.
    Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, 2008. FOCS’08, pp. 793–802. IEEE (2008)Google Scholar
  2. 2.
    Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (2006)Google Scholar
  4. 4.
    Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A 21(19), 3801 (1988)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Altarelli, F., Braunstein, A., Dall’Asta, L., Lage-Castellanos, A., Zecchina, R.: Bayesian inference of epidemics on networks via belief propagation. Phys. Rev. Lett. 112, 118701 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, R.: Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X 4, 021024 (2014)Google Scholar
  8. 8.
    Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Large deviations of cascade processes on graphs. Phys. Rev. E 87, 062115 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Optimizing spread dynamics on graphs by message passing. J. Stat. Mech. 2013(09), P09011 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Private communication (2014)Google Scholar
  11. 11.
    Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The Condensation Phase Transition in Random Graph Coloring. arXiv:1404.5513 (2014)
  14. 14.
    Barbier, J., Krzakala, F., Zdeborova, L., Zhang, P.: The hard-core model on random graphs revisited. J. Phys. Conf. Ser. 473(1), 012021 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Battaglia, D., Kolář, M., Zecchina, R.: Minimizing energy below the glass thresholds. Phys. Rev. E 70, 036107 (2004)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Bau, S., Wormald, N.C., Zhou, S.: Decycling numbers of random regular graphs. Random Struct. Algorithms 21(3–4), 397–413 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Ann. Probab. 41(6), 4080–4115 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Beineke, L.W., Vandell, R.C.: Decycling graphs. J. Graph Theory 25(1), 59–77 (1997)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Benevides, F., Przykucki, M.: Maximum Percolation Time in Two-Dimensional Bootstrap Percolation. arXiv (2013)Google Scholar
  21. 21.
    Biroli, G., Mézard, M.: Lattice glass models. Phys. Rev. Lett. 88, 025501 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Biskup, M., Schonmann, R.: Metastable behavior for bootstrap percolation on regular trees. J. Stat. Phys. 136(4), 667–676 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Bohman, T., Frieze, A., Wormald, N.C.: Avoidance of a giant component in half the edge set of a random graph. Random Struct. Algorithms 25(4), 432–449 (2004)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Bohman, T., Picollelli, M.: Sir epidemics on random graphs with a fixed degree sequence. Random Struct. Algorithms 41(2), 179–214 (2012)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Bordenave, C., Lelarge, M., Salez, J.: Matchings on infinite graphs. Probab. Theory Relat. Fields 157(1–2), 183–208 (2013)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C Solid State Phys. 12(1), L31 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, N.: On the approximability of influence in social networks. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 1029–1037 (2008)Google Scholar
  29. 29.
    Coja-Oghlan, A.: On belief propagation guided decimation for random k-sat. In: Proceedings of 22nd SODA, p. 957 (2011)Google Scholar
  30. 30.
    Coja-Oghlan, A.: The Asymptotic \(k\)-sat Threshold. arXiv:1310.2728 (2013)
  31. 31.
    Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious Sets in Expanders. arXiv:1306.2465 (2013)
  32. 32.
    Daudé, H., Mora, T., Mézard, M., Zecchina, R.: Pairs of sat assignments and clustering in random boolean formulae. Theor. Comput. Sci. 393, 260–279 (2008)CrossRefMATHGoogle Scholar
  33. 33.
    Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. arXiv:1310.4787 (2013)
  34. 34.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Dreyer Jr, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111(3–4), 535–564 (2003)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Franz, S., Leone, M., Toninelli, F.L.: Replica bounds for diluted non-poissonian spin systems. J. Phys. A Math. Gen. 36, 10967–10985 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Frieze, A., Luczak, T.: On the independence and chromatic numbers of random regular graphs. J. Comb. Theory Ser B 54(1), 123–132 (1992)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978)CrossRefGoogle Scholar
  40. 40.
    Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Haxell, P., Pikhurko, O., Thomason, A.: Maximum acyclic and fragmented sets in regular graphs. J. Graph Theory 57(2), 149–156 (2008)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125(2), 195–224 (2003)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Janson, S., Luczak, M., Windridge, P.: Law of large numbers for the sir epidemic on a random graph with given degrees. arXiv:1308.5493 (2013)
  45. 45.
    Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(g_{n, p}\). Ann. Appl. Probab. 22(5), 1989–2047 (2012)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E 82, 016101 (2010)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 137–146 (2003)Google Scholar
  48. 48.
    Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104(25), 10318–10323 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498 (2001)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Lelarge, M.: Diffusion and cascading behavior in random networks. Games Econ. Behav. 75(2), 752–775 (2012)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Lokhov, A.Y., Mézard, M., Ohta, H., Zdeborova, L.: Inferring the Origin of an Epidemic with Dynamic Message-Passing Algorithm. arXiv:1303.5315 (2013)
  52. 52.
    Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. J. Stat. Phys. 124(6), 1317–1350 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Mézard, M., Montanari, A.: Information, Physics and Computation. Oxford University Press, Oxford (2009)CrossRefMATHGoogle Scholar
  54. 54.
    Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B. 20, 217 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    Mézard, M., Parisi, G.: The cavity method at zero temperature. J. Stat. Phys. 111(1–2), 1 (2003)CrossRefMATHGoogle Scholar
  56. 56.
    Mézard, M., Zecchina, R.: Random \(k\)-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66(5), 056126 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    Molloy, M.: The freezing threshold for k-colourings of a random graph. In: Proceedings of the 44th Symposium on Theory of Computing, p. 921. ACM (2012)Google Scholar
  58. 58.
    Monasson, R.: Structural glass transition and the entropy of the metastable states. Phys. Rev. Lett. 75, 2847–2850 (1995)ADSCrossRefGoogle Scholar
  59. 59.
    Montanari, A., Parisi, G., Ricci-Tersenghi, F.: Instability of one-step replica-symmetry-broken phase in satisfiability problems. J. Phys. A 37(6), 2073 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Montanari, A., Ricci-Tersenghi, F.: On the nature of the low-temperature phase in discontinuous mean-field spin glasses. Eur. Phys. J. B. 33(3), 339–346 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Clusters of solutions and replica symmetry breaking in random \(k\)-satisfiability. J. Stat. Mech. 2008(04), P04004 (2008)CrossRefGoogle Scholar
  62. 62.
    Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb. 16(1), R2 (2009)ADSGoogle Scholar
  63. 63.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer, New york (2013)Google Scholar
  65. 65.
    Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probab. Theory Relat. Fields 130(3), 319–336 (2004)CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Pinto, P.C., Thiran, P., Vetterli, M.: Locating the source of diffusion in large-scale networks. Phys. Rev. Lett. 109, 068702 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Reichman, D.: New bounds for contagious sets. Discrete Math. 312(10), 1812–1814 (2012)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Ricci-Tersenghi, F., Semerjian, G.: On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms. J. Stat. Mech. 2009(09), P09001 (2009)CrossRefGoogle Scholar
  69. 69.
    Riordan, O., Warnke, L.: Achlioptas process phase transitions are continuous. Ann. Appl. Probab. 22(4), 1450–1464 (2012)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Rivoire, O., Biroli, G., Martin, O., Mézard, M.: Glass models on Bethe lattices. Eur. Phys. J. B. 37, 55 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Qin, S.-M., Zhou, H.-J.: Solving the Undirected Feedback Vertex Set Problem by Local Search. arXiv:1405.0446 (2014)
  72. 72.
    Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)CrossRefMathSciNetGoogle Scholar
  73. 73.
    Shrestha, M., Moore, C.: Message-passing approach for threshold models of behavior in networks. Phys. Rev. E 89, 022805 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    Talagrand, M.: The parisi formula. Ann. Math. 163, 221 (2006)CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    Zdeborová, L., Mézard, M.: The number of matchings in random graphs. J. Stat. Mech. 2006(05), P05003 (2006)CrossRefGoogle Scholar
  76. 76.
    Zhou, H.-J.: Spin glass approach to the feedback vertex set problem. Eur. Phys. J. B. 86(11), 1–9 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LPTENS, Unité Mixte de Recherche (UMR 8549) du CNRS et de l’ENS, associée à l’UPMC Univ Paris 06Paris Cedex 05France

Personalised recommendations