# Minimal Contagious Sets in Random Regular Graphs

- 609 Downloads
- 10 Citations

## Abstract

The bootstrap percolation (or threshold model) is a dynamic process modelling the propagation of an epidemic on a graph, where inactive vertices become active if their number of active neighbours reach some threshold. We study an optimization problem related to it, namely the determination of the minimal number of active sites in an initial configuration that leads to the activation of the whole graph under this dynamics, with and without a constraint on the time needed for the complete activation. This problem encompasses in special cases many extremal characteristics of graphs like their independence, decycling or domination number, and can also be seen as a packing problem of repulsive particles. We use the cavity method (including the effects of replica symmetry breaking), an heuristic technique of statistical mechanics many predictions of which have been confirmed rigorously in the recent years. We have obtained in this way several quantitative conjectures on the size of minimal contagious sets in large random regular graphs, the most striking being that 5-regular random graph with a threshold of activation of 3 (resp. 6-regular with threshold 4) have contagious sets containing a fraction \(1/6\) (resp. \(1/4\)) of the total number of vertices. Equivalently these numbers are the minimal fraction of vertices that have to be removed from a 5-regular (resp. 6-regular) random graph to destroy its 3-core. We also investigated Survey Propagation like algorithmic procedures for solving this optimization problem on single instances of random regular graphs.

## Keywords

Bootstrap percolation Optimization problems Cavity method Random graphs## Notes

### Acknowledgments

We warmly thank Fabrizio Altarelli, Victor Bapst, Alfredo Braunstein, Amin Coja-Oghlan, Luca Dall’Asta, Svante Janson, Marc Lelarge and Riccardo Zecchina for useful discussions, and in particular FA, AB, LDA and RZ for sharing with us the unpublished numerical results [10] on their maxsum algorithm, and SJ for a useful correspondence and for pointing out the reference [17]. The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-11-JS02-005-01 (GAP project) and of the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No 290038.

## References

- 1.Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, 2008. FOCS’08, pp. 793–802. IEEE (2008)Google Scholar
- 2.Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science
**323**(5920), 1453–1455 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar - 3.Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (2006)Google Scholar
- 4.Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci.
**411**(44–46), 4017–4022 (2010)CrossRefMATHMathSciNetGoogle Scholar - 5.Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A
**21**(19), 3801 (1988)ADSCrossRefMATHMathSciNetGoogle Scholar - 6.Altarelli, F., Braunstein, A., Dall’Asta, L., Lage-Castellanos, A., Zecchina, R.: Bayesian inference of epidemics on networks via belief propagation. Phys. Rev. Lett.
**112**, 118701 (2014)ADSCrossRefGoogle Scholar - 7.Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, R.: Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X
**4**, 021024 (2014)Google Scholar - 8.Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Large deviations of cascade processes on graphs. Phys. Rev. E
**87**, 062115 (2013)ADSCrossRefGoogle Scholar - 9.Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Optimizing spread dynamics on graphs by message passing. J. Stat. Mech.
**2013**(09), P09011 (2013)CrossRefMathSciNetGoogle Scholar - 10.Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Private communication (2014)Google Scholar
- 11.Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc.
**364**(5), 2667–2701 (2012)CrossRefMATHGoogle Scholar - 12.Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms
**30**(1–2), 257–286 (2007)CrossRefMATHMathSciNetGoogle Scholar - 13.Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The Condensation Phase Transition in Random Graph Coloring. arXiv:1404.5513 (2014)
- 14.Barbier, J., Krzakala, F., Zdeborova, L., Zhang, P.: The hard-core model on random graphs revisited. J. Phys. Conf. Ser.
**473**(1), 012021 (2013)ADSCrossRefGoogle Scholar - 15.Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
- 16.Battaglia, D., Kolář, M., Zecchina, R.: Minimizing energy below the glass thresholds. Phys. Rev. E
**70**, 036107 (2004)ADSCrossRefMathSciNetGoogle Scholar - 17.Bau, S., Wormald, N.C., Zhou, S.: Decycling numbers of random regular graphs. Random Struct. Algorithms
**21**(3–4), 397–413 (2002)CrossRefMATHMathSciNetGoogle Scholar - 18.Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Ann. Probab.
**41**(6), 4080–4115 (2013)CrossRefMATHMathSciNetGoogle Scholar - 19.Beineke, L.W., Vandell, R.C.: Decycling graphs. J. Graph Theory
**25**(1), 59–77 (1997)CrossRefMATHMathSciNetGoogle Scholar - 20.Benevides, F., Przykucki, M.: Maximum Percolation Time in Two-Dimensional Bootstrap Percolation. arXiv (2013)Google Scholar
- 21.Biroli, G., Mézard, M.: Lattice glass models. Phys. Rev. Lett.
**88**, 025501 (2001)ADSCrossRefGoogle Scholar - 22.Biskup, M., Schonmann, R.: Metastable behavior for bootstrap percolation on regular trees. J. Stat. Phys.
**136**(4), 667–676 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar - 23.Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep.
**424**(4), 175–308 (2006)ADSCrossRefMathSciNetGoogle Scholar - 24.Bohman, T., Frieze, A., Wormald, N.C.: Avoidance of a giant component in half the edge set of a random graph. Random Struct. Algorithms
**25**(4), 432–449 (2004)CrossRefMathSciNetGoogle Scholar - 25.Bohman, T., Picollelli, M.: Sir epidemics on random graphs with a fixed degree sequence. Random Struct. Algorithms
**41**(2), 179–214 (2012)CrossRefMATHMathSciNetGoogle Scholar - 26.Bordenave, C., Lelarge, M., Salez, J.: Matchings on infinite graphs. Probab. Theory Relat. Fields
**157**(1–2), 183–208 (2013)CrossRefMATHMathSciNetGoogle Scholar - 27.Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C Solid State Phys.
**12**(1), L31 (1979)ADSCrossRefGoogle Scholar - 28.Chen, N.: On the approximability of influence in social networks. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 1029–1037 (2008)Google Scholar
- 29.Coja-Oghlan, A.: On belief propagation guided decimation for random k-sat. In: Proceedings of 22nd SODA, p. 957 (2011)Google Scholar
- 30.Coja-Oghlan, A.: The Asymptotic \(k\)-sat Threshold. arXiv:1310.2728 (2013)
- 31.Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious Sets in Expanders. arXiv:1306.2465 (2013)
- 32.Daudé, H., Mora, T., Mézard, M., Zecchina, R.: Pairs of sat assignments and clustering in random boolean formulae. Theor. Comput. Sci.
**393**, 260–279 (2008)CrossRefMATHGoogle Scholar - 33.Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. arXiv:1310.4787 (2013)
- 34.Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys.
**51**(4), 1079–1187 (2002)ADSCrossRefGoogle Scholar - 35.Dreyer Jr, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math.
**157**(7), 1615–1627 (2009)CrossRefMATHMathSciNetGoogle Scholar - 36.Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys.
**111**(3–4), 535–564 (2003)CrossRefMATHMathSciNetGoogle Scholar - 37.Franz, S., Leone, M., Toninelli, F.L.: Replica bounds for diluted non-poissonian spin systems. J. Phys. A Math. Gen.
**36**, 10967–10985 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar - 38.Frieze, A., Luczak, T.: On the independence and chromatic numbers of random regular graphs. J. Comb. Theory Ser B
**54**(1), 123–132 (1992)CrossRefMATHMathSciNetGoogle Scholar - 39.Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol.
**83**, 1420–1443 (1978)CrossRefGoogle Scholar - 40.Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys.
**233**(1), 1–12 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar - 41.Haxell, P., Pikhurko, O., Thomason, A.: Maximum acyclic and fragmented sets in regular graphs. J. Graph Theory
**57**(2), 149–156 (2008)CrossRefMATHMathSciNetGoogle Scholar - 42.Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev.
**42**, 599 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar - 43.Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields
**125**(2), 195–224 (2003)CrossRefMATHMathSciNetGoogle Scholar - 44.Janson, S., Luczak, M., Windridge, P.: Law of large numbers for the sir epidemic on a random graph with given degrees. arXiv:1308.5493 (2013)
- 45.Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(g_{n, p}\). Ann. Appl. Probab.
**22**(5), 1989–2047 (2012)CrossRefMATHMathSciNetGoogle Scholar - 46.Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E
**82**, 016101 (2010)ADSCrossRefMathSciNetGoogle Scholar - 47.Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 137–146 (2003)Google Scholar
- 48.Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci.
**104**(25), 10318–10323 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar - 49.Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory
**47**(2), 498 (2001)CrossRefMATHMathSciNetGoogle Scholar - 50.Lelarge, M.: Diffusion and cascading behavior in random networks. Games Econ. Behav.
**75**(2), 752–775 (2012)CrossRefMATHMathSciNetGoogle Scholar - 51.Lokhov, A.Y., Mézard, M., Ohta, H., Zdeborova, L.: Inferring the Origin of an Epidemic with Dynamic Message-Passing Algorithm. arXiv:1303.5315 (2013)
- 52.Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. J. Stat. Phys.
**124**(6), 1317–1350 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar - 53.Mézard, M., Montanari, A.: Information, Physics and Computation. Oxford University Press, Oxford (2009)CrossRefMATHGoogle Scholar
- 54.Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B.
**20**, 217 (2001)ADSCrossRefGoogle Scholar - 55.Mézard, M., Parisi, G.: The cavity method at zero temperature. J. Stat. Phys.
**111**(1–2), 1 (2003)CrossRefMATHGoogle Scholar - 56.Mézard, M., Zecchina, R.: Random \(k\)-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E
**66**(5), 056126 (2002)ADSCrossRefGoogle Scholar - 57.Molloy, M.: The freezing threshold for k-colourings of a random graph. In: Proceedings of the 44th Symposium on Theory of Computing, p. 921. ACM (2012)Google Scholar
- 58.Monasson, R.: Structural glass transition and the entropy of the metastable states. Phys. Rev. Lett.
**75**, 2847–2850 (1995)ADSCrossRefGoogle Scholar - 59.Montanari, A., Parisi, G., Ricci-Tersenghi, F.: Instability of one-step replica-symmetry-broken phase in satisfiability problems. J. Phys. A
**37**(6), 2073 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar - 60.Montanari, A., Ricci-Tersenghi, F.: On the nature of the low-temperature phase in discontinuous mean-field spin glasses. Eur. Phys. J. B.
**33**(3), 339–346 (2003)ADSCrossRefGoogle Scholar - 61.Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Clusters of solutions and replica symmetry breaking in random \(k\)-satisfiability. J. Stat. Mech.
**2008**(04), P04004 (2008)CrossRefGoogle Scholar - 62.Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb.
**16**(1), R2 (2009)ADSGoogle Scholar - 63.Newman, M.: The structure and function of complex networks. SIAM Rev.
**45**(2), 167–256 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar - 64.Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer, New york (2013)Google Scholar
- 65.Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probab. Theory Relat. Fields
**130**(3), 319–336 (2004)CrossRefMATHMathSciNetGoogle Scholar - 66.Pinto, P.C., Thiran, P., Vetterli, M.: Locating the source of diffusion in large-scale networks. Phys. Rev. Lett.
**109**, 068702 (2012)ADSCrossRefGoogle Scholar - 67.Reichman, D.: New bounds for contagious sets. Discrete Math.
**312**(10), 1812–1814 (2012)CrossRefMATHMathSciNetGoogle Scholar - 68.Ricci-Tersenghi, F., Semerjian, G.: On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms. J. Stat. Mech.
**2009**(09), P09001 (2009)CrossRefGoogle Scholar - 69.Riordan, O., Warnke, L.: Achlioptas process phase transitions are continuous. Ann. Appl. Probab.
**22**(4), 1450–1464 (2012)CrossRefMATHMathSciNetGoogle Scholar - 70.Rivoire, O., Biroli, G., Martin, O., Mézard, M.: Glass models on Bethe lattices. Eur. Phys. J. B.
**37**, 55 (2004)ADSCrossRefGoogle Scholar - 71.Qin, S.-M., Zhou, H.-J.: Solving the Undirected Feedback Vertex Set Problem by Local Search. arXiv:1405.0446 (2014)
- 72.Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory
**57**(8), 5163–5181 (2011)CrossRefMathSciNetGoogle Scholar - 73.Shrestha, M., Moore, C.: Message-passing approach for threshold models of behavior in networks. Phys. Rev. E
**89**, 022805 (2014)ADSCrossRefGoogle Scholar - 74.Talagrand, M.: The parisi formula. Ann. Math.
**163**, 221 (2006)CrossRefMATHMathSciNetGoogle Scholar - 75.Zdeborová, L., Mézard, M.: The number of matchings in random graphs. J. Stat. Mech.
**2006**(05), P05003 (2006)CrossRefGoogle Scholar - 76.Zhou, H.-J.: Spin glass approach to the feedback vertex set problem. Eur. Phys. J. B.
**86**(11), 1–9 (2013)CrossRefMathSciNetGoogle Scholar