Skip to main content
Log in

Discrete Kinetic Models for Molecular Motors: Asymptotic Velocity and Gaussian Fluctuations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider random walks on quasi one dimensional lattices, as introduced in Faggionato and Silvestri (Random Walks on Quasi One Dimensional Lattices: Large Deviations and Fluctuation Theorems, 2014). This mathematical setting covers a large class of discrete kinetic models for non-cooperative molecular motors on periodic tracks. We derive general formulas for the asymptotic velocity and diffusion coefficient, and we show how to reduce their computation to suitable linear systems of the same degree of a single fundamental cell, with possible linear chain removals. We apply the above results to special families of kinetic models, also catching some errors in the biophysics literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. If not stated otherwise, by “random walk” we mean a Markovian random walk, hence with exponential waiting times.

  2. By calling \((X^*_t)_{t \in {\mathbb {R}} _+}\) the skeleton process, it holds \({\mathbb {P}} ( X^*_t/t \sim \vartheta )\approx e^{-t I(\vartheta ) }\).

  3. The Skohorod space \( D( {\mathbb {R}} _+; {\mathbb {R}} )\) is given by paths from \({\mathbb {R}} _+\) to \({\mathbb {R}} \), which are right continuous and have left limits. It is endowed with the so called Skohorod topology [1]. Alternatively, one could define \(B_t^{(n)}\) by rescaling and linear interpolation, and replace \(D( {\mathbb {R}} _+;{\mathbb {R}} ) \) by the space of continuous paths \(C ({\mathbb {R}} _+; {\mathbb {R}} )\) where convergence corresponds to uniform convergence on compact intervals. The invariance principle remains true in this alternative setting.

  4. We point out that in the definition of \(J_2\) (cf. (25) in [12]) the term \(\Pi ^0_{(1)1}\) appears although not defined in (4) of [12]. Indeed, \(\Pi ^0_{(1)1}=1\) (in agreement with the rule that a product on an empty set is one). This can be checked as follows. The terms \(D_2\) comes from the last addendum in [12][eq. (A44)] involving \(T^{(1)}_0\) defined in [12][eq. (A39)]. By comparing this term with \(D_2\), and therefore \(J_2\), one gets that in [12] \(T_0^{(1)}\) can be thought as \(-\frac{1}{\alpha _0} \sum _{k=0}^{M-1} y_k^{(1)} \Pi _{(1)1}^k/ [1-\Pi ^M_{(1)1}]\), \(y_k^{(1)}\) being defined in [12][eq. (A37)], with the convention that \(\Pi ^0_{(1)1}=1\).

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  2. Das, R.K., Kolomeisky, A.B.: Spatial fluctuations affect the dynamics of motor proteins. J. Phys. Chem. B 112, 11112–11121 (2008)

    Article  Google Scholar 

  3. Das, R.K., Kolomeisky, A.B.: Dynamic properties of molecular motors in the divided-pathway model. Phys. Chem. Chem. Phys. 11, 4815–4820 (2009)

    Article  Google Scholar 

  4. Derrida, B.: Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA (1995)

    Google Scholar 

  6. Faggionato, A., Silvestri, V.: Random Walks on Quasi One Dimensional Lattices: Large Deviations and Fluctuation Theorems. Preprint 2014. http://arxiv.org/abs/1401.2256 (version number larger than 1)

  7. Faggionato, A., Silvestri, V.: Fluctuation theorems for discrete kinetic models of molecular motors. (In preparation)

  8. Fisher, M.E., Kolomeisky, A.B.: The force exerted by a molecular motor. Proc. Natl. Acad. Sci. USA 96, 6597–6602 (1999a)

    Article  ADS  Google Scholar 

  9. Fisher, M.E., Kolomeisky, A.B.: Molecular motors and the force they exert. Physica A 274, 241–266 (1999b)

    Article  ADS  Google Scholar 

  10. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  11. Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997)

    Article  ADS  Google Scholar 

  12. Kolomeisky, A.B.: Exact results for parallel-chain kinetic models of biological transport. J. Chem. Phys. 115, 7523 (2001)

    Article  Google Scholar 

  13. Kolomeisky, A.B.: Private communication

  14. Kolomeisky, A.B.: Motor proteins and molecular motors: how to operate machines at the nanoscale. J. Phys. Condens. Matter 25, 463101 (2013)

    Article  ADS  Google Scholar 

  15. Kolomeisky, A.B., Fisher, M.E.: Extended kinetic models with waiting-time distributions: exact results. J. Chem. Phys. 113, 10867–10877 (2000a)

    Article  ADS  Google Scholar 

  16. Kolomeisky, A.B., Fisher, M.E.: Periodic sequential kinetic models with jumping, branching and deaths. Physica A 279, 1–20 (2000b)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  ADS  Google Scholar 

  18. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  19. Parmeggiani, A., Jülicher, F., Ajdari, A., Prost, J.: Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 21–27 (1999)

    Article  Google Scholar 

  20. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Ritort, F.: Single-molecule experiments in biological physics: methods and applications. J. Phys. Condens. Matter 18, R531–R583 (2006)

    Article  ADS  Google Scholar 

  22. Tian, J.P., Kannan, D.: Lumpability and commutativity of Markov processes. Stoch. Anal. Appl. 24, 685–702 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsygankov, D., Fisher, M.E.: Kinetic models for mechanoenzymes: structural aspects under large loads. J. Chem. Phys. 128, 015102 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. A.B. Kolomeisky for useful discussions. V. Silvestri thanks the Department of Mathematics in University “La Sapienza” for the hospitality and acknowledges the support of the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Faggionato.

Appendix: Random Time Change of Cumulative Processes

Appendix: Random Time Change of Cumulative Processes

Consider a sequence \(( w_i, \tau _i )_{i \ge 1}\) of i.i.d. 2d vectors with values in \({\mathbb {R}} \times (0,+\infty )\). For each integer \(m \ge 1\) we define

$$\begin{aligned}&W_m:= w_1+w_2 + \cdots + w_m,\end{aligned}$$
(90)
$$\begin{aligned}&\mathcal {T}_m:= \tau _1+\tau _2 + \cdots + \tau _m. \end{aligned}$$
(91)

We set \(W_0=\mathcal {T}_0=0\). Note that \( \lim _{m \rightarrow \infty } \mathcal {T}_m= +\infty \) a.s. As a consequence, we can univocally define a.s. a random process \(\left\{ \nu (t) \right\} _{t \in {\mathbb {R}} _+}\) with values in \(\{0,1,2,3, \dots \}\) such that

$$\begin{aligned} \mathcal {T}_{\nu (t)}\le t < \mathcal {T}_{\nu (t)+1 }\,, \qquad t \ge 0. \end{aligned}$$
(92)

Note that \(\nu (t)= \max \{ m\in {\mathbb {N}} :\, \mathcal {T}_m \le t \}\). Finally, we define the process \(Z:[0,\infty ) \rightarrow {\mathbb {R}} \) as

$$\begin{aligned} Z_t:= W_{\nu (t) }. \end{aligned}$$
(93)

Note that \(Z_0=0\). The resulting process \(Z= (Z_t)_{t \in {\mathbb {R}} _+}\) is therefore obtained from the cumulative process \((W_m)_{m \ge 0}\) by a random time change, and generalizes the concept of (time-homogeneous) random walk on \({\mathbb {R}} \). For example, if \(w_i \) and \(\tau _i\) are independent and \(\tau _i\) is an exponential variable of parameter \(\lambda \), then the process \(Z\) is a continuous time random walk with exponential holding times of parameter \(\lambda \) and with jump probability given by the law of \(w_i\). If \(\tau _i \equiv 1\) for all \(i\), then \(Z_t= W_{\lfloor t \rfloor }\) (\(\lfloor \cdot \rfloor \) denoting the integer part) and \((Z_n)_{n \in {\mathbb {N}} }\) is a discrete time random walk on \({\mathbb {R}} \) with jump probability given by the law of \(w_i\).

The skeleton process \(X^*\) is indeed a special case of process \(Z\) (recall the definition of the random time \(S\) given in (2)):

Lemma 11.1

Consider a sequence \(( w_i, \tau _i )_{i \ge 1}\) of i.i.d. vectors, with the same law of the random vector \(\bigl (X^*_S,S\bigr )\in \{-1,1\} \times (0,+\infty )\) when the process \((X_t)_{t \in {\mathbb {R}} _+}\) starts at \(0_*\). We define \((Z_t )_{t \in {\mathbb {R}} _+}\) as the stochastic process built from \(( w_i, \tau _i )_{i \ge 1}\) according to (93). Then \((Z_t)_{t \in {\mathbb {R}} _+}\) has the same law of \(( X_t^*)_{t \in {\mathbb {R}} _+} \) with \(X^*_0= 0\).

The proof of the above lemma is very simple and therefore omitted.

We state our main results for \((Z_t)_{t \in {\mathbb {R}} _+}\):

Theorem 2

The stochastic process \((Z_t)_{t \in {\mathbb {R}} _+} \) satisfies:

  1. (i)

    [LLN] Assume that \( {\mathbb {E}} ( \tau _i) < \infty \). Then almost surely \( \lim _{t \rightarrow \infty } \frac{Z_t}{t} = v:= \frac{ {\mathbb {E}} (w_i) }{{\mathbb {E}} (\tau _i)}\).

  2. (ii)

    [Invariance Principle] Assume that \({\mathbb {E}} ( w_i^2), {\mathbb {E}} ( \tau _i^2) < \infty \). Given \(n\in \{1,2, \dots \}\) define the rescaled process

    $$\begin{aligned} B^{(n)} _t := \frac{1}{\sqrt{n}} \left\{ Z_{ nt} - vnt \right\} \end{aligned}$$

    in the Skohorod space \( D( {\mathbb {R}} _+; {\mathbb {R}} )\). Then as \(n\rightarrow \infty \) the rescaled process \(B^{(n)}\) weakly converges to a Brownian motion on \({\mathbb {R}} \) with diffusion constant

    $$\begin{aligned} \sigma ^2:=\frac{ \mathrm{Var}(w_1-v\tau _1)}{ {\mathbb {E}} (\tau _1) }. \end{aligned}$$
    (94)

1.1 Proof of the Law of Large Numbers in Theorem 2

The proof is rather standard, we give it for completeness as short. Since \(\lim _{m \rightarrow \infty } \mathcal {T}_m= \infty \) a.s., we have \(\lim _{t \rightarrow \infty } \nu (t)= \infty \) a.s. Hence from the LLN for \((W_n)_{n \ge 1}\) and \((\mathcal {T}_n )_{ n \ge 1}\) we deduce that \(\lim _{t\rightarrow \infty } \frac{ W_{\nu (t) }}{\nu (t)} ={\mathbb {E}} (w_i)\) and \( \lim _{t \rightarrow \infty } \frac{\mathcal {T}_{\nu (t)}}{ \nu (t) } = {\mathbb {E}} (\tau _i)\) a.s. From the last limit and the bounds (recall (92))

$$\begin{aligned} \frac{\mathcal {T}_{\nu (t)}}{ \nu (t) } \le \frac{t}{\nu (t)} < \frac{\mathcal {T}_{\nu (t)+1 }}{\nu (t)+1}\cdot \frac{ \nu (t)+1}{\nu (t)} \end{aligned}$$

we get \( \lim _{t \rightarrow \infty } \nu (t)/t = 1/ {\mathbb {E}} (\tau _i)\) a.s. Since \(Z_t/t= [W_{\nu (t) }/\nu (t)]\cdot [\nu (t)/t]\) we get the thesis.

1.2 Proof of the Invariance Principle in Theorem 2

For each \(n\ge 1\) and \(t\in {\mathbb {R}} _+\) let

$$\begin{aligned} A^{(n)}_t := \frac{1}{\sqrt{n} } \left\{ W_{\lfloor nt \rfloor }- {\mathbb {E}} ( w_i) nt \right\} \,,\qquad D^{(n)}_t:= \frac{1}{\sqrt{n} } \left\{ \mathcal {T}_{\lfloor nt \rfloor }- {\mathbb {E}} ( \tau _i) nt \right\} . \end{aligned}$$

Then, since \(v= {\mathbb {E}} (w_i)/ {\mathbb {E}} (\tau _i)\), the following identity holds:

$$\begin{aligned} B^{(n)}_{t}&=\frac{1}{\sqrt{n}} \left\{ W_{\nu (nt)}- {\mathbb {E}} (w_1) \nu (nt)\right\} +\frac{1}{\sqrt{n}} \left\{ {\mathbb {E}} (w_1) \nu (nt) - v \mathcal {T}_{\nu (nt)}\right\} + \frac{v}{\sqrt{n}} \left\{ \mathcal {T}_{\nu (nt)}- nt\right\} \nonumber \\&=A^{(n)}_{\nu (nt)/n }- v D^{(n)} _{\nu (nt)/n}+ \frac{v}{\sqrt{n}} \left\{ \mathcal {T}_{\nu (nt)}- nt\right\} . \end{aligned}$$
(95)

Lemma 11.2

Given \(\varepsilon >0\) and \(s>0\) we have

$$\begin{aligned} \lim _{n\rightarrow \infty } {\mathbb {P}} \left( \sup _{0\le t \le s} \left| \frac{1}{\sqrt{n}}\left\{ \mathcal {T}_{ \nu ( n t ) } -nt\right\} \right| >\varepsilon \right) =0. \end{aligned}$$
(96)

Proof

As proven above \(\lim _{t \rightarrow \infty } \nu (t)/t= \theta := 1/ {\mathbb {E}} (\tau _i) \) a.s. Hence, fixed \(\delta >0\), it holds \({\mathbb {P}} ( E_n^c) \le \delta \) for \(n\) large enough as we assume, where \(E_n\) is the event \(\{\nu ( n s ) \le 2\theta n s \}\). Trivially the event \(E_n\) implies that \( \nu (nt)\le 2\theta n s \) for each \(t \in [0,s]\). Now we observe that, due to (92), \(\mathcal {T}_{\nu (nt)}\le nt < \mathcal {T}_{\nu (nt)+1}\), hence \(0\le nt -\mathcal {T}_{\nu (nt)} \le \tau _{\nu (nt)+1}\). Due to the above considerations, calling \(F_n\) the event in (96) we conclude that

$$\begin{aligned} {\mathbb {P}} (F_n)\le {\mathbb {P}} (E_n^c)+ {\mathbb {P}} \left( \max _{ 1 \le i \le 2\theta n s+1 } \tau _i > \varepsilon \sqrt{n}\right) \end{aligned}$$
(97)

Since \({\mathbb {P}} (E_n^c) \le \delta \) eventually, by the arbitrariness of \(\delta \) we only need to show that the last probability in (97) goes to zero as \(n \rightarrow \infty \). This is a general fact. Let \((X_i)_{i \ge 1}\) be i.i.d. positive random variables with \( {\mathbb {E}} (X_i^2) < \infty \) (in our case \(X_i= \tau _i\)). Then, given \(a >0\),

$$\begin{aligned} {\mathbb {P}} (\max _{1\le i \le N} X_i \le a \sqrt{N})&= {\mathbb {P}} ( X_1\le a \sqrt{N})^N =[ 1- {\mathbb {P}} ( X_1> a \sqrt{N})]^N \\&= e^{N \ln [ 1- {\mathbb {P}} ( X_1> a \sqrt{N})] } \sim e^{- N {\mathbb {P}} ( X_1> a\sqrt{ N})}. \end{aligned}$$

Note that the last equivalence holds since \(\lim _{N \rightarrow \infty }{\mathbb {P}} ( X_1> a\sqrt{ N})=0\). At this point, in order to prove that \(\max _{1\le i \le N} X_i / \sqrt{N}\) weakly converges to zero we only need to show that \(\lim _{N \rightarrow \infty } N {\mathbb {P}} ( X_1> a\sqrt{ N}) =0\), or equivalently that \( \lim _{t \rightarrow \infty } t^2 P(X_1>t)=0\). This follows form the fact that \({\mathbb {E}} (X_i^2) < \infty \) (see Exercise 3.5, page 15 of [5]). \(\square \)

Due to Lemma 11.2 we can disregard the last addendum in (95) in order to prove the invariance principle for \( B^{(n)}\). Let us now consider the random path \(\Gamma ^{(n)}\) in \(D({\mathbb {R}} _+; {\mathbb {R}} \times {\mathbb {R}} \times {\mathbb {R}} _+)\) defined as

$$\begin{aligned} \Gamma ^{(n)}: {\mathbb {R}} _+ \ni t \rightarrow \left( A^{(n)}_t ,D^{(n)}_t , \nu ( n t )/n\right) \in {\mathbb {R}} \times {\mathbb {R}} \times {\mathbb {R}} _+. \end{aligned}$$

Lemma 11.3

The random path \(\Gamma ^{(n)}\) weakly converges to the random path

$$\begin{aligned} \left( \,\left( B_1(t), B_2(t) , \theta t \right) \,\right) _{t \in {\mathbb {R}} _+} \end{aligned}$$

where \( \left( \,\left( B_1(t), B_2(t)\right) \,\right) _{t \in {\mathbb {R}} _+}\) is a zero mean bidimensional Brownian motion such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm{Var}\bigl (B_1(1) \bigr ) =\mathrm{Var} (w_1) ,\\ \mathrm{Var} \bigl ( B_2(1) \bigr )=\mathrm{Var}(\tau _1) ,\\ \mathrm{Cov}\bigl ( B_1(1), B_2(1) \bigr )=\mathrm{Cov}(w_1,\tau _1). \end{array}\right. } \end{aligned}$$

Proof

We first show that the random path \( \bigl (\nu (n t )/n\bigr )_{t \in {\mathbb {R}} _+}\) weakly converges to the deterministic path \((\theta t )_{t \in {\mathbb {R}} _+}\). To this aim it is enough to show the convergence in probability w.r.t. the uniform distance on finite intervals (this implies the convergence in the Skohorod topology). In particular, we claim that for any \(s , \delta >0\) it holds

$$\begin{aligned} \lim _{n \rightarrow \infty } {\mathbb {P}} \left( \sup _{0 \le t \le s} \Big | \frac{ \nu (nt)}{n} - \theta t \Big | > \delta \right) =0. \end{aligned}$$
(98)

By monotonicity \(\nu (n u)\le \nu (n t) \le \nu (n v)\) if \( u \le t \le v\), thus implying that

$$\begin{aligned} \Big | \frac{ \nu (nt)}{n} - \theta t \Big |\le \max \left\{ \Big | \frac{ \nu (nu )}{n} - \theta u \Big |+\theta |u-t|, \,\Big | \frac{ \nu (nv )}{n} - \theta v\Big |+ \theta |v-t|\right\} . \end{aligned}$$

At this point the convergence (98) follows easily from the convergence in probability for fixed times, i.e. from the fact that \(\nu (n r)/n \rightarrow \theta r\) a.s. for each fixed \(r\).

Since by the invariance principle for sums of independent vectors it holds

$$\begin{aligned} \Big ( A^{(n)}_t ,D^{(n)}_t \Big ) _{t \in {\mathbb {R}} _+}\Longrightarrow \left( \, \bigl ( B_1(t), B_2(t)\bigr ) \,\right) _{t \in {\mathbb {R}} _+} \end{aligned}$$

and since we have just proved that \( \bigl (\nu (nt)/n\bigr )_{t \in {\mathbb {R}} _+} \Longrightarrow \bigl ( \theta t \bigr )_{t \in {\mathbb {R}} _+}\) (where the r.h.s. is a deterministic path), the thesis follows from Theorem 3.9 of [1]. \(\square \)

We can now conclude the proof of the invariance principle. Since the map \( {\mathbb {R}} _+ \ni t \rightarrow A^{(n)}_{ \nu (nt)/n } \in {\mathbb {R}} \) if simply the composition \(f \circ g (t)\) where \(f(u)= A^{(n)}_{u } \) and \(g(t)= \nu (nt)/n\), and similarly for \( {\mathbb {R}} _+ \ni t \rightarrow D^{(n)}_{ \nu (nt)/n } \in {\mathbb {R}} \), we can simply combine the above lemma with the Lemma in [1][page 151] to derive the weak convergence

$$\begin{aligned} \Big ( \,A^{(n)}_{ \nu (nt)/n } - v D^{(n)}_{ \nu (nt)/n } \,\Big ) _{t \in {\mathbb {R}} _+} \; \Longrightarrow \; \Big ( \,B_1(\theta t) -v B_2(\theta t) \, \Big )_{t \in {\mathbb {R}} _+}. \end{aligned}$$
(99)

Since the last process is a Brownian motion with diffusion constant (94), combining the above convergence with (95) and Lemma 11.2 we get the invariance principle for \(B^{(n)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faggionato, A., Silvestri, V. Discrete Kinetic Models for Molecular Motors: Asymptotic Velocity and Gaussian Fluctuations. J Stat Phys 157, 1062–1096 (2014). https://doi.org/10.1007/s10955-014-1106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1106-8

Keywords

Navigation