Journal of Statistical Physics

, Volume 157, Issue 6, pp 1062–1096 | Cite as

Discrete Kinetic Models for Molecular Motors: Asymptotic Velocity and Gaussian Fluctuations

  • Alessandra Faggionato
  • Vittoria Silvestri


We consider random walks on quasi one dimensional lattices, as introduced in Faggionato and Silvestri (Random Walks on Quasi One Dimensional Lattices: Large Deviations and Fluctuation Theorems, 2014). This mathematical setting covers a large class of discrete kinetic models for non-cooperative molecular motors on periodic tracks. We derive general formulas for the asymptotic velocity and diffusion coefficient, and we show how to reduce their computation to suitable linear systems of the same degree of a single fundamental cell, with possible linear chain removals. We apply the above results to special families of kinetic models, also catching some errors in the biophysics literature.


Markov chain Law of large numbers Invariance principle Molecular motors 



The authors thank Prof. A.B. Kolomeisky for useful discussions. V. Silvestri thanks the Department of Mathematics in University “La Sapienza” for the hospitality and acknowledges the support of the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Das, R.K., Kolomeisky, A.B.: Spatial fluctuations affect the dynamics of motor proteins. J. Phys. Chem. B 112, 11112–11121 (2008)CrossRefGoogle Scholar
  3. 3.
    Das, R.K., Kolomeisky, A.B.: Dynamic properties of molecular motors in the divided-pathway model. Phys. Chem. Chem. Phys. 11, 4815–4820 (2009)CrossRefGoogle Scholar
  4. 4.
    Derrida, B.: Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA (1995)Google Scholar
  6. 6.
    Faggionato, A., Silvestri, V.: Random Walks on Quasi One Dimensional Lattices: Large Deviations and Fluctuation Theorems. Preprint 2014. (version number larger than 1)
  7. 7.
    Faggionato, A., Silvestri, V.: Fluctuation theorems for discrete kinetic models of molecular motors. (In preparation)Google Scholar
  8. 8.
    Fisher, M.E., Kolomeisky, A.B.: The force exerted by a molecular motor. Proc. Natl. Acad. Sci. USA 96, 6597–6602 (1999a)ADSCrossRefGoogle Scholar
  9. 9.
    Fisher, M.E., Kolomeisky, A.B.: Molecular motors and the force they exert. Physica A 274, 241–266 (1999b)ADSCrossRefGoogle Scholar
  10. 10.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)Google Scholar
  11. 11.
    Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Kolomeisky, A.B.: Exact results for parallel-chain kinetic models of biological transport. J. Chem. Phys. 115, 7523 (2001)CrossRefGoogle Scholar
  13. 13.
    Kolomeisky, A.B.: Private communicationGoogle Scholar
  14. 14.
    Kolomeisky, A.B.: Motor proteins and molecular motors: how to operate machines at the nanoscale. J. Phys. Condens. Matter 25, 463101 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Kolomeisky, A.B., Fisher, M.E.: Extended kinetic models with waiting-time distributions: exact results. J. Chem. Phys. 113, 10867–10877 (2000a)ADSCrossRefGoogle Scholar
  16. 16.
    Kolomeisky, A.B., Fisher, M.E.: Periodic sequential kinetic models with jumping, branching and deaths. Physica A 279, 1–20 (2000b)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Parmeggiani, A., Jülicher, F., Ajdari, A., Prost, J.: Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 21–27 (1999)CrossRefGoogle Scholar
  20. 20.
    Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Ritort, F.: Single-molecule experiments in biological physics: methods and applications. J. Phys. Condens. Matter 18, R531–R583 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Tian, J.P., Kannan, D.: Lumpability and commutativity of Markov processes. Stoch. Anal. Appl. 24, 685–702 (2006)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Tsygankov, D., Fisher, M.E.: Kinetic models for mechanoenzymes: structural aspects under large loads. J. Chem. Phys. 128, 015102 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma ‘La Sapienza’RomeItaly
  2. 2.Cambridge Centre for AnalysisCambridgeUK

Personalised recommendations