Advertisement

Journal of Statistical Physics

, Volume 157, Issue 2, pp 363–375 | Cite as

Continuous and Discrete Painlevé Equations Arising from the Gap Probability Distribution of the Finite \(n\) Gaussian Unitary Ensembles

  • Man Cao
  • Yang Chen
  • James Griffin
Article

Abstract

In this paper we study the gap probability problem in the Gaussian unitary ensembles of \(n\) by \(n\) matrices : The probability that the interval \(J := (-a,a)\) is free of eigenvalues. In the works of Tracy and Widom, Adler and Van Moerbeke, and Forrester and Witte on this subject, it has been shown that two Painlevé type differential equations arise in this context. The first is the Jimbo–Miwa–Okomoto \(\sigma \)-form and the second is a particular Painlevé IV. Using the ladder operator technique of orthogonal polynomials we derive three quantities associated with the gap probability, denoted as \(\sigma _n(a)\), \(R_n(a)\) and \(r_n(a)\). We show that each one satisfies a second order Painlevé type differential equation as well as a discrete Painlevé type equation. In particular, in addition to providing an elementary derivation of the aforementioned \(\sigma \)-form and Painlevé IV we are able to show that the quantity \(r_n(a)\) satisfies a particular case of Chazy’s second degree second order differential equation. For the discrete equations we show that the quantity \(r_n(a)\) satisfies a particular form of the modified discrete Painlevé II equation obtained by Grammaticos and Ramani in the context of Backlund transformations. We also derive second order second degree difference equations for the quantities \(R_n(a)\) and \(\sigma _n(a)\).

Keywords

Gap probability Random matrices Painlevé equations 

References

  1. 1.
    Adler, M., Van Moerbeke, P.: Hermitian, symmetric and symplectic random ensembles : PDEs for the distribution of the spectrum. Ann. Math. 153, 149–189 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Basor, E., Chen, Y.: Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles. J. Phys. A: Math. Theor. 42, 035203 (2009)Google Scholar
  3. 3.
    Basor, E., Chen, Y., Ehrhardt, T.: Painlevé V and time-dependent Jacobi polynomials. J. Phys. A: Math. Theor. 43, 015204 (2010)Google Scholar
  4. 4.
    Bertola, M., Eynard, B., Harnad, J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 263, 401–437 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Yang Chen, Z.D. Bai, Y-C. Liang, Random Matrix Theory and its Applications : Multivariate Statistics and Wireless Communications. Lecture Note Series, vol. 18, World Scientific Publishing 2009. Institute for Mathematical Sciences, National University of Singapore.Google Scholar
  6. 6.
    Chen, Y., Ismail, M.E.H.: Ladder operators and differential equations for orthogonal polynomials. J. Phys. A 30, 7817–7829 (1997)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chen, Y., Ismail, M.: Ismail, Jacobi polynomials from compatibility conditions. Proc. Am. Math. Soc. 133, 465–472 (2005). (electronic)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, Y., Its, A.: Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I. J. Approx. Theory 162, 270–297 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, Y., McKay, M.R.: Coulumb fluid, Painlevé transcendents, and the information theory of MIMO systems. IEEE Trans. Inf. Theory 58, 4594–4634 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, Y., Pruessner, G.: Orthogonal Polynomials with discontinuous weight. J. Phys. A 38(12), L191–L198 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chen, Y., Zhang, L.: Painlevé VI and the unitary Jacobi ensembles. Stud. Appl. Math. 125, 91–112 (2010)MATHMathSciNetGoogle Scholar
  12. 12.
    Cosgrove, C.M.: Chazy’s second-degree Painlevé equations. J. Phys. A 39, 11955 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dai, D., Zhang, L.: Painlevé VI and Hankel determinants for the generalized Jacobi weight. J. Phys. A: Math. Theor. 43, 055207 (2010)Google Scholar
  14. 14.
    Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147(2), 395–430 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Forrester, P.J., Witte, N.S.: Gap probabilities in the finite and scaled Cauchy random matrix ensembles. Nonlinearity 13, 1965 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Haine, L., Vanderstichlen, D.: A centerless representation of the Virasoro algebra associated with the unitary circular ensemble. J. Comput. Appl. Math. 236(1), 19–27 (August 2011)Google Scholar
  17. 17.
    Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D 1(1), 80–158 (1980)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Magnus, A.P.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215–237 (1995)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Marcellán, F., Rocha, I.A.: On semiclassical linear functionals: integral representations. J. Comput. Appl. Math. 57(1–2), 239–249 (1995)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics Series, 3rd edn. Elsevier Academic Press, Amsterdam (2004)MATHGoogle Scholar
  21. 21.
    Ramani, A., Grammaticos, B.: Miura transforms for discrete Painlevé equations. J. Phys. A 25, L633–L637 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939. American Mathematical Society Colloquium Publications, vol 23 (1939)Google Scholar
  23. 23.
    Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163, 33–72 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and TechnologyUniversity of MacauTaipa MacauChina
  2. 2.Department of Mathematics and StatisticsAmerican University of SharjahSharjahUAE

Personalised recommendations