Journal of Statistical Physics

, Volume 155, Issue 6, pp 1299–1328 | Cite as

The Microscopic Foundations of Vlasov Theory for Jellium-Like Newtonian \(N\)-Body Systems

  • Michael K.-H. Kiessling


The kinetic equations of Vlasov theory, in the weak formulation, are rigorously shown to govern the \(N\rightarrow \infty \) limit of the Newtonian dynamics of \(D\ge 2\)-dimensional \(N\)-body systems with attractive harmonic pair interactions and locally integrable repulsive inverse power law pair interactions, provided a mild higher moment hypothesis on the forces (which is shown to propagate globally in time for each \(N\)) will hold uniformly in \(N\) at later times if it holds uniformly in \(N\) initially (the uniformity in \(N\) of this moment condition is demonstrated to hold for an open set of initial data). Logarithmic interactions are included as a limiting case. The proof is based on the Liouville equation, more precisely the first member of the pertinent BBGKY hierarchy, and does not invoke the Hewitt–Savage theorem, nor any regularization of the interactions. In addition, a rigorous proof of the virial theorem and of some of its interesting ramifications is given.


Kinetic theory Vlasov equations Microscopic foundations  One-component plasma Jellium Coulomb interactions Riesz interactions 



The author gratefully acknowledges support by the NSF through Grant DMS-0807705. He also thanks Yves Elskens and Clement Mouhot for their comments.


  1. 1.
    Bobylev, A.V., Ibragimov, NKh: Interconnectivity of symmetry properties for equations of dynamics, kinetic theory of gases, and hydrodynamics. Matem. Mod. 1, 100–109 (1989). in RussianMATHMathSciNetGoogle Scholar
  2. 2.
    Bobylev, A.V., Dukes, P., Illner, R., Victory, H.D.: On Vlasov–Manev equations, I: foundations, properties and global nonexistence. J. Stat. Phys. 88, 885–911 (1997)CrossRefMATHMathSciNetADSGoogle Scholar
  3. 3.
    Boltzmann, L.: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Sitzungsber. Akad. Wiss. Wien 58, 517–560 (1868)Google Scholar
  4. 4.
    Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Akad. Wiss. Wien 66, 275ff (1872)Google Scholar
  5. 5.
    Boltzmann, L.: Vorlesungen über Gastheorie, J.A. Barth, Leipzig (1896); English translation: Lectures on Gas theory (S.G. Brush, transl.), University of California Press, Berkeley (1964)Google Scholar
  6. 6.
    Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)CrossRefMATHMathSciNetADSGoogle Scholar
  7. 7.
    Calogero, F.: Solution of the one-dimensional \(N\)-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12:419—436 (1971); Erratum, ibid. 37:3646 (1996)Google Scholar
  8. 8.
    Calogero, F., Leyvraz, F.: A macroscopic system with undamped periodic compressional oscillations. J. Stat. Phys. 151, 922–937 (2013)CrossRefMATHMathSciNetADSGoogle Scholar
  9. 9.
    Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1–54 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Cercignani, C., Illner, R., Pulvirenti, R.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1991)Google Scholar
  11. 11.
    Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cergignani’s conjecture for the Boltzmann equation. Kinet. Relat. Models 4, 277–294 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dobrushin, R.L.: Vlasov equations, Funkts. Anal. Pril. 13(2), pp. 48–58, 1979. Engl. transl. in. Funct. Anal. Appl. 13, 115–123 (1979)Google Scholar
  13. 13.
    Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Feynman, R.P.: The Character of Physical Law. MIT Press, Boston (1965)Google Scholar
  15. 15.
    Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)MATHGoogle Scholar
  16. 16.
    Forrester, P.J., Jancovici, B., Madore, J.: The two-dimensional Coulomb gas on a sphere: exact results. J. Stat. Phys. 69, 179–192 (1992)CrossRefMATHMathSciNetADSGoogle Scholar
  17. 17.
    Ganguly, K., Victory Jr, H.D.: On the convergence of particle methods for multidimensional Vlasov–Poisson systems. SIAM J. Numer. Anal. 26, 249–288 (1989)CrossRefMATHMathSciNetADSGoogle Scholar
  18. 18.
    Ganguly, K., Lee, J.T., Victory Jr, H.D.: On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed. SIAM J. Numer. Anal. 28, 1574–1609 (1991)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gibbs, A.L., Su, E.F.: On choosing and bounding probability metrics, e-print. Int. Stat. Rev. 70, 419–435 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)CrossRefMATHGoogle Scholar
  21. 21.
    Goldstein, S.: Boltzmann’s approach to statistical mechanics. In: Bricmont, J., Dürr, D., Galavotti, M.C., Ghirardi, G., Petruccione, F., Zanghì, N. (eds.) Chance in Physics: Foundations and Perspectives. Lecture Notes in Physics, pp. 39–54. Springer, Berlin (2001)CrossRefGoogle Scholar
  22. 22.
    Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of nonequilibrium systems. Phys. D 193, 53–66 (2004)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed.) Handbuch der Physik, pp. 205–294. Springer, Berlin (1958)Google Scholar
  24. 24.
    Hauray, M., Jabin, P.-E.: \(N\)-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183, 489–524 (2007)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)MATHGoogle Scholar
  27. 27.
    Illner, R., Dukes, P., Victory, H.D., Bobylev, A.V.: On Vlasov- -Manev equations, II: local existence and uniqueness. J. Stat. Phys. 91, 625–654 (1998)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Jeans, J.H.: On the theory of star-streaming and the structure of the universe. MNRAS 76, 70–84 (1915)ADSGoogle Scholar
  29. 29.
    Kiessling, M.K.-H.: Microscopic derivations of Vlasov equations. Commun. Nonlinear Sci. Numer. Simul. 13, 106–113 (2008)CrossRefMATHMathSciNetADSGoogle Scholar
  30. 30.
    Kiessling, M.K.-H.: Statistical equilibrium dynamics. In: Campa, A., Giansanti, A., Morigi, G., Sylos Labini, F. (eds.) Dynamics and Thermodynamics of Systems with Long Range Interactions: Theory and Experiments, vol. 970, pp. 91–108. AIP Conference Proceedings (2008)Google Scholar
  31. 31.
    Kiessling, M.K.-H.: The Vlasov continuum limit for the classical microcanonical ensemble. Rev. Math. Phys. 21, 1145–1195 (2009)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Kiessling, M.K.-H.: A note on classical ground state energies. J. Stat. Phys. 136, 275–284 (2009)CrossRefMATHMathSciNetADSGoogle Scholar
  33. 33.
    Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)CrossRefMATHMathSciNetADSGoogle Scholar
  34. 34.
    Lancellotti, C.: From Vlasov fluctuations to the BGL kinetic equation. Nuovo Cim. 33, 111–119 (2010)Google Scholar
  35. 35.
    Landkof, N.S.: Foundations of modern potential theory. Springer, Berlin (1972)CrossRefMATHGoogle Scholar
  36. 36.
    Lanford III, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Battelle Seattle 1974 Rencontres. Lecture Notes in Physics. Springer, Berlin (1975)Google Scholar
  37. 37.
    Lanford III, O.E.: On a derivation of the Boltzmann equation. Asterisque 40, 117–137 (1976)MathSciNetGoogle Scholar
  38. 38.
    Lanford III, O.E.: On a derivation of the Boltzmann equation. In: Lebowitz, J.L., Montroll, E.W. (eds.) Nonequilibrium Phenomena I: The Boltzmann Equation. North-Holland, New York (1983)Google Scholar
  39. 39.
    Lemou, M., Méhats, F., Rigault, C.: Stable ground states and self-similar blow-up solutions for the gravitational Vlasov–Manev system. SIAM J. Math. Anal. 44, 3928–3968 (2012)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Levermore, D.C., Sun, W.: Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet. Relat. Models 3, 335–351 (2010)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)MATHGoogle Scholar
  42. 42.
    Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)CrossRefMATHMathSciNetADSGoogle Scholar
  43. 43.
    Loeper, G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Lynden-Bell, D., Lynden-Bell, R.M.: Exact general solutions to extraordinary \(N\)-body problems. Proc. R. Soc. Lond. A 445, 475–489 (1999)CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Lynden-Bell, D., Lynden-Bell, R.M.: Relaxation to a perpetually pulsating equilibrium. J. Stat. Phys. 117, 199–209 (2004)CrossRefMATHMathSciNetADSGoogle Scholar
  46. 46.
    Manev, G.: Die Gravitation und das Prinzip von Wirkung und Gegenwirkung. Z. Phys. 31, 786–802 (1925)CrossRefADSGoogle Scholar
  47. 47.
    Maxwell, J.C.: On the dynamical theory of gases. Proc. R. Soc. Lond. Phil. Trans. 157, 49–88 (1867)CrossRefGoogle Scholar
  48. 48.
    Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)CrossRefMATHADSGoogle Scholar
  49. 49.
    Nerattini, R., Brauchart, J.S., Kiessling, M.K.-H.: “Magic” numbers in Smale’s 7th problem, J. Stat. Phys. (2013) (submitted)Google Scholar
  50. 50.
    Neunzert, H. Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen. Tagung, Math. Forschungsinst., Oberwolfach, 1973, Lecture Notes in Mathematics, vol. 395, pp. 275–290. Springer, Berlin (1974)Google Scholar
  51. 51.
    Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Proceedings of Kinetic Theories and the Boltzmann Equation, Montecatini, 1981. Lecture Notes in Mathematics. vol. 1048, pp. 60–110, Springer, Berlin (1984)Google Scholar
  52. 52.
    Penrose, O.: Foundations of Statistical Mechanics, Pergamon, Oxford (1970); reprinted by Dover Press. Mineola, New York (2005)Google Scholar
  53. 53.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
  54. 54.
    Pfaffelmoser, K.: Globale klassische Lösungen des dreidimensionalen Vlasov–Poisson-systems. Doctoral Dissertation, Ludwig Maximilian Universität, München (1989)Google Scholar
  55. 55.
    Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions with generic initial data. J. Diff. Equ. 95, 281–303 (1992)CrossRefMATHMathSciNetADSGoogle Scholar
  56. 56.
    Pulvirenti, M., Saffrio, C. Simonella, S.: On the validity of the Boltzmann equation for short range potentials, (eprint) arxiv:1301.2514v1 [math-ph] (2013)Google Scholar
  57. 57.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Academic Press, New York (1980)MATHGoogle Scholar
  58. 58.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Academic Press, New York (1975)MATHGoogle Scholar
  59. 59.
    Rein, G., Self-gravitating systems in Newtonian theory—the Vlasov–Poisson system. In: “Mathematics of gravitation”, Part I. vol. 41, pp. 179–194. Banach Center Publication, Warszawa (1997)Google Scholar
  60. 60.
    Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. PDE 16, 1313–1335 (1991)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. 7, 237–265 (1904)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Vlasov, A.A.: On vibrational properties of a gas of electrons. Zh. E.T.F 8, 291–318 (1938)MATHGoogle Scholar
  63. 63.
    Vlasov, A.A.: Many-particle theory and its application to plasma, In: Russian monographs and Texts on Advanced Mathematics and Physics. vol. 7. Gordon and Breach, New York (1961); originally published by: State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad (1950)Google Scholar
  64. 64.
    Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)CrossRefGoogle Scholar
  66. 66.
    Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18, 245–297 (1988)MATHMathSciNetGoogle Scholar
  67. 67.
    Victory Jr, H.D., Allen, E.J.: The convergence theory of particle-in-cell methods for multidimensional Vlasov–Poisson systems. SIAM J. Numer. Anal. 28, 1207–1241 (1991)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Victory Jr, H.D., Tucker, G., Ganguly, K.: The convergence analysis of fully discretized particle methods for solving Vlasov–Poisson systems. SIAM J. Numer. Anal. 28, 955–989 (1991)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Villani, C.: Conservative forms of Boltzmann’s collision operator: Landau revisited. Math. Models Numer. Anal. 33, 209–227 (1999)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Wollman, S.: On the approximation of the Vlasov–Poisson system by particle methods. SIAM J. Numer. Anal. 37, 1369–1398 (2000)CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Wollman, S., Ozizmir, E., Narasimhan, R.: The convergence of the particle method for the Vlasov–Poisson system with equally spaced initial data points. Transp. Theory Stat. Phys. 30, 1–62 (2001)CrossRefMATHMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of MathematicsRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations