Advertisement

Journal of Statistical Physics

, Volume 154, Issue 5, pp 1325–1351 | Cite as

Entropy Production in Stochastic Systems with Fast and Slow Time-Scales

  • Stefano Bo
  • Antonio Celani
Article

Abstract

The behavior of stochastic systems with interacting fast and slow degrees of freedom is investigated both for discrete and continuous processes. Effective equations that govern the process on the slow timescale are derived by asymptotic methods, both for the propagator and the entropy production of the systems. It is found that in general the result of the limiting procedure for entropy does not coincide with the one defined for the effective slow process and features an additional contribution. The specific conditions under which such a correction does or does not arise are stated and the general explicit form of this remnant entropy production is offered. Finally, the fluctuation theorems that are satisfied by this additional term are given.

Keywords

Markov processes Diffusive processes Multiscale methods  Stochastic thermodynamics 

References

  1. 1.
    Altaner, B., Vollmer, J.: Fluctuation-preserving coarse graining for biochemical systems. Phys. Rev. Lett. 108, 228101 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Camblong, H.E., et al.: Quantum anomaly in molecular physics. Phys. Rev. Lett. 89, 220402 (2001)CrossRefGoogle Scholar
  3. 3.
    Celani, A., Bo, S., Eichhorn, R., Aurell, E.: Anomalous thermodynamics at the micro-scale. Phys. Rev. Lett. 109(26), 260603 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Chetrite, R., Gawȩdzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Esposito, M.: Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Esposito, M., Van den Broeck, C.: The three faces of the second law: I. Master equation formulation. Phys. Rev. E 82, 011143 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1996)Google Scholar
  8. 8.
    Fujikawa, K., Suzuki, H.: Path Integrals and Quantum Anomalies (International Series of Monographs on Physics). Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340 (1977)CrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113, 297 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Kawaguchi, K., Nakayama, Y.: Fluctuation theorem for hidden entropy production. Phys. Rev. E 88, 022147 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Lebowitz, J.L., Spohn, H.: A Gallavotti Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2007)Google Scholar
  14. 14.
    Phillips, R., Kondev, J., Theriot, J., Garcia, H.: Physical Biology of the Cell. Garland Science, New York (2008)Google Scholar
  15. 15.
    Pigolotti, S., Vulpiani, A.: Coarse graining of master equations with fast and slow states. J. Chem. Phys. 128, 154114 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Puglisi, A., Pigolotti, S., Rondoni, L., Vulpiani, A.: Entropy production and coarse-graining in Markov processes. J. Stat. Mech. 2010, P05015 (2010)CrossRefGoogle Scholar
  17. 17.
    Rahav, S., Jarzynski, C.: Fluctuation relations and coarse-graining. J. Stat. Mech. 2007, P09012 (2007)CrossRefGoogle Scholar
  18. 18.
    Rao, C., Arkin, A.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Risken, H.: The Fokker–Planck Equation, pp. 188–191. Springer, Berlin (1989)MATHGoogle Scholar
  20. 20.
    Santillán, M., Qian, H.: Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys. Rev. E 83, 041130 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Sekimoto, K.: Stochastic Energetics. Lecture Notes in Physics, vol. 799. Springer, Berlin (2010)CrossRefGoogle Scholar
  23. 23.
    Van den Broeck, C., Esposito, M.: Three faces of the second law. II. Fokker–Planck formulation. Phys. Rev. E 82, 011144 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland Personal Library, Amsterdam (2007)Google Scholar
  25. 25.
    E, W., Engquist, B.: Multiscale modeling and computation. Notices AMS 50, 1062 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics Department and INFNUniversity of TurinTurinItaly
  2. 2.Physics of Biological Systems, Institut Pasteur and CNRS UMR 3525ParisFrance

Personalised recommendations