Skip to main content
Log in

Probabilistic View of Explosion in an Inelastic Kac Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let \(\{\mu (\cdot ,t):t\ge 0\}\) be the family of probability measures corresponding to the solution of the inelastic Kac model introduced in Pulvirenti and Toscani (J Stat Phys 114:1453–1480, 2004). It has been proved by Gabetta and Regazzini (J Stat Phys 147:1007–1019, 2012) that the solution converges weakly to equilibrium if and only if a suitable symmetrized form of the initial data belongs to the standard domain of attraction of a specific stable law. In the present paper it is shown that, for initial data which are heavier-tailed than the aforementioned ones, the limiting distribution is improper in the sense that it has probability \(1/2\) “adherent” to \(-\infty \) and probability \(1/2\) “adherent” to \(+\infty \). It is explained in which sense this phenomenon is amenable to a sort of explosion, and the main result consists in an explicit expression of the rate of such an explosion. The presentation of these statements is preceded by a discussion about the necessity of the assumption under which their validity is proved. This gives the chance to make an adjustment to a portion of a proof contained in the above-mentioned paper by Gabetta and Regazzini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bassetti, F., Ladelli, L.: Self similar solutions in one-dimensional kinetic models: a probabilistic view. Ann. Appl. Probab. 22, 1928–1961 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassetti, F., Perversi, E.: Speed of convergence to equilibrium in Wasserstein metrics for Kac-like kinetic equations. Electron. J. Probab. 18(6), 1–35 (2013)

    MathSciNet  Google Scholar 

  3. Bassetti, F., Toscani, G.: Explicit equilibria in a kinetic model of gambling. Phys. Rev. E 81, 066115 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bassetti, F., Ladelli, L., Matthes, D.: Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Relat. Fields 150, 77–109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bassetti, F., Ladelli, L., Regazzini, E.: Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys. 133, 683–710 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bassetti, F., Ladelli, L., Toscani, G.: Kinetic models with randomly perturbed binary collisions. J. Stat. Phys. 142, 686–709 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  8. Bolley, F., Carrillo, J.A.: Tanaka theorem for inelastic Maxwell models. Commun. Math. Phys. 276, 287314 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 1(10), 333–375 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carlen, E., Carvalho, M.C., Gabetta, E.: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Commun. Pure Appl. Math. 53, 370–397 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carlen, E., Carvalho, M.C., Gabetta, E.: On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. Anal. 220, 362–387 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlen, E., Gabetta, E., Regazzini, E.: Probabilistic investigation on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Probab. 45, 95–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 6, 75198 (2007)

    MathSciNet  Google Scholar 

  15. Carrillo, J.A., Cordier, S., Toscani, G.: Over-populated tails for conservative-in-the-mean inelastic Maxwell models. Discrete Contin. Dyn. Syst. 24, 57–81 (2009)

    MathSciNet  Google Scholar 

  16. Chow, Y.S., Teicher, H.: Probability Theory, 3rd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  17. Dolera, E., Regazzini, E.: The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation. Ann. Appl. Probab. 20, 430–461 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dolera, E., Regazzini, E.: Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation, solutions. arXiv:1206.5147v1[math.pr] (2012)

  19. Dolera, E., Gabetta, E., Regazzini, E.: Reaching the best possible rate of convergence to equilibrium for solutions of Kac’s equation via central limit theorem. Ann. Appl. Probab. 19, 186–209 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fortini, S., Ladelli, L., Regazzini, E.: A central limit problem for partially exchangeable random variables. Theory Probab. Appl. 41, 224–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fristedt, B., Gray, L.: A Modern Approach to Probability Theory. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  22. Gabetta, E., Regazzini, E.: Some new results for McKean’s graphs with applications to Kac’s equation. J. Stat. Phys. 125, 947–974 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gabetta, E., Regazzini, E.: Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab. 18, 2320–2336 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gabetta, E., Regazzini, E.: Central limit theorem for the solution of the Kac equation: speed of approach to equilibrium in weak metrics. Probab. Theory Relat. Fields 146, 451–480 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gabetta, E., Regazzini, E.: Complete characterization of convergence to equilibrium for an inelastic Kac model. J. Stat. Phys. 147, 1007–1019 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolters–Noordhoff Publishing, Groningen (1971)

    MATH  Google Scholar 

  27. Loève, M.: Probability Theory I, 4th edn. Springer, New York (1977)

    MATH  Google Scholar 

  28. Matthes, D., Toscani, G.: On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130, 1087–1117 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Matthes, D., Toscani, G.: Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity 23, 2081–2100 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. McKean Jr, H.P.: Speed of approach to equilibrium for Kac’s caricature of Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966)

    Article  MathSciNet  Google Scholar 

  31. McKean Jr, H.P.: An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Combinatorial Theory 2, 358–382 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  32. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    MATH  Google Scholar 

  33. Pulvirenti, A., Toscani, G.: Asymptotic properties of the inelastic Kac model. J. Stat. Phys. 114, 1453–1480 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Villani, C.: A review of mathematical topics in collisional theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North Holland, Amsterdam (2002)

  35. Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124, 781–822 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous referees for giving several valuable comments regarding the presentation of the main result. The research of Eleonora Perversi and Eugenio Regazzini has been partially supported by MIUR-2012AZS52J-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Regazzini.

Appendices

Appendix 1: Proof of Proposition 1

By virtue of the Skorokhod construction there is a subset \({\widehat{\Omega }}'\) of \({\widehat{\Omega }}\), with \({\widehat{{\mathcal {P}}}}\)-probability \(1\), such that the recursive relations (4) hold true for every point of \({\widehat{\Omega }}'\). Then, we redefine the \({\hat{\beta }^{(n)}}\)’s according to (4) outside \({\widehat{\Omega }}'\). This does not change the distribution of \({\widehat{W}}_n\). Next, we introduce the compact space

$$\begin{aligned} M:= \overline{{\mathbb {N}}}^\infty \times \Big (\times _{j\ge 1}\overline{{\mathbb {N}}}_j^\infty \Big )\times \Big (\times _{j\ge 1}I_j^\infty \Big ) \end{aligned}$$

where \(\overline{{\mathbb {N}}}_1,\overline{{\mathbb {N}}}_2,\dots \) are copies of \(\overline{{\mathbb {N}}}:=\{1,2,\dots ,+\infty \}\) and \(I_1,I_2,\dots \) are copies of \([0,2\pi ]\). We define the vector-valued function \(\widehat{Y}:{\widehat{\Omega }}\rightarrow M\) such that

$$\begin{aligned} \widehat{Y}:=\Big ( ({\hat{\nu }}^{(j)})_{j\ge 1}, ({\hat{i}}^{(j)})_{j\ge 1}, ({\hat{\theta }}^{(j)})_{j\ge 1}\Big ) \end{aligned}$$

(same notation as in Sect. 2), and the mappings

$$\begin{aligned} f_i(\widehat{Y})&:= \Big ( ({\hat{\nu }}^{(1)},{\hat{i}}^{(1)}),\dots ,({\hat{\nu }}^{(i)},{\hat{i}}^{(i)}),\big (c_p({\hat{\theta }}_j^{(1)}),s_p({\hat{\theta }}_j^{(1)})\big )_{j\ge 1},\qquad \qquad (\widehat{Y}\in M)\\&\qquad \dots ,\big (c_p({\hat{\theta }}_j^{(i)}),s_p({\hat{\theta }}_j^{(i)})\big )_{j\ge 1}\Big ) \end{aligned}$$

\(i=1,2,\dots \). It should be noted that \(({\hat{\nu }}^{(i)},{\hat{i}}^{(i)})\) specifies a McKean tree, say \({\widehat{\mathcal {T}}}_i\). The leading idea of the proof is the construction of a decreasing sequence \((A_n)_{n\ge 1}\) of nonempty closed subsets of \(M\) such that inequalities (5)–(6) are met simultaneously when \(\widehat{Y}\) belongs to \(A_n\), for every \(n\). To show this we first exhibit, for each \(n\), a distinguished McKean tree \({ \mathcal {T}}_n\) together with a specific sequence of angles \(\theta ^{(n)}\) for which the desired inequalities occur. Then, we will make use of the distributional properties of \(({\widehat{\mathcal {T}}}_n,{\hat{\theta }^{(n)}})\) to state the existence of suitable neighbourhoods of the above pair on which the inequalities of interest (5)–(6) are preserved. The rule we follow to construct the \(A_n\)’s is recursive. In the sequel, we confine ourselves to describing the first two steps since the step from \(A_n\) to \(A_{n+1}\) is essentially the same but with a more complicated notation.

Proof for \(n=1\) Our aim is to combine a tree with a sequence of angles in such a way that they yield (5)–(6). We begin by focusing on the complete tree of suitable depth \(N_1\) and on angles equal to \(\pi /4\). The common value of the associated \({\hat{\beta }}\)’s is \([(1/\sqrt{2})^{2/\alpha }]^{N_1}=(1/2)^{N_1/\alpha }\). We choose \(N_1\) and \(m_1\) in such a way that these \({\hat{\beta }}\)’s are all greater than \(1/(x_{m_1}-\varepsilon )\), which is equivalent to \(N_1\le \log _2(x_{m_1}-\varepsilon )^\alpha \). This inequality is satisfied if we select \(m_1\) such that \(x_{m_1}\) is greater than \((1+\varepsilon )\) and \(N_1=\lfloor \log _2(x_{m_1}-\varepsilon )^\alpha \rfloor \). Now consider this complete McKean tree with \(2^{N_1}\) leaves (see the construction of a generic tree at the end of Sect. 2) and assume all its leaves germinate to obtain the complete tree with \(\nu ^{(1)}=2^{N_1+1}\) leaves, that is \({ \mathcal {T}}_1\). According to the usual left-to-right order, \({\hat{\theta }}^{(1)}_{2^{N_1}+k-1}\) will indicate the angle associated with the germination of the \(k\)th leaf of the original tree (i.e. before germination), \(k=1,\dots ,2^{N_1}\). With a view to the construction of the \({\hat{\beta }}^{(1)}\)’s, we start from a reference situation with \((2^{N_1}-1)\) angles \(\theta ^{(1)}_1=\dots =\theta ^{(1)}_{2^{N_1}-1}=\pi /4\) and in which we choose values \(\theta ^{(1)}_{2^{N_1}+k-1}, k=1,\dots ,2^{N_1}\), meeting \(1/x_{m_1}\le |\cos \theta ^{(1)}_{2^{N_1}+k-1}|^{2/\alpha }(1/2)^{N_1/\alpha }\le 1/(x_{m_1}-\varepsilon )\). Values of this kind exist since \(2^{N_1/\alpha }/(x_{m_1}-\varepsilon )\le 1\). With this choice of \((2^{N_1+1}-1)\) angles, inequality (5) follows immediately. Moreover, it is easy to check that \(\sum _{i=1}^{\lfloor \frac{\nu ^{(1)}+1}{2}\rfloor }|\beta ^{(1)}_{2i-1,\nu ^{(1)}}|^\alpha \ge \frac{1}{x_{m_1}^\alpha }\lfloor \frac{\nu ^{(1)}+1}{2}\rfloor \ge \frac{1}{2}(\frac{x_{m_1}-\varepsilon }{x_{m_1}})^\alpha =:a>0\). Then, there are a tree, i.e. the above \({ \mathcal {T}}_1\) with \(\nu ^{(1)}=2^{N_1+1}\) leaves, and a nondegenerate closed interval \({\mathcal {I}}_1\) including \((1/2,\dots ,1/2,|\cos \theta ^{(1)}_{2^{N_1}}|^2,\dots ,|\cos \theta ^{(1)}_{2^{N_1+1}-1}|^2)\) with the following property: the \({\hat{\beta }}^{(1)}\)’s associated with the values of \(\Big (({\hat{\nu }}^{(1)},{\hat{i}}^{(1)}),\; \big (c_p({\hat{\theta }}_j^{(1)}),s_p({\hat{\theta }}_j^{(1)})\big )_{j\ge 1}\Big )\) contained in \(\{{ \mathcal {T}}_1\}\times {\mathcal {I}}_1\times [0,1]^\infty \) satisfy (5)–(6). It is of paramount importance to note that, thanks to the distributional properties of \(({\widehat{\mathcal {T}}}_1,{\hat{\theta }}^{(1)})\), the probability of the event \(\{ f_1(\widehat{Y})\in \{{ \mathcal {T}}_1\}\times {\mathcal {I}}_1\times [0,1]^\infty \}\) is strictly positive. Now, \(A_1:=f_1^{-1}\Big (\{{ \mathcal {T}}_1\}\times {\mathcal {I}}_1\times [0,1]^\infty \Big )\) is a closed subset of \(M\) thanks to the continuity of \(f_1\).

Proof for \(n=2\). We consider the above tree \({ \mathcal {T}}_1\), with \(\nu ^{(1)}\) leaves, in combination with the sequence \((\theta ^{(1)}_1,\dots ,\theta ^{(1)}_{\nu ^{(1)}})\) of angles associated with \({ \mathcal {T}}_1\) in the previous part of the proof. We next append a suitable complete tree to each leaf of \({ \mathcal {T}}_1\), in accord with the following rule, to obtain \({ \mathcal {T}}_2\). For the actual construction of the latter, we consider each node \(k=1,\dots ,2^{N_1}\) of depth \(N_1\) in \({ \mathcal {T}}_1\), and we replace its “left child” (“right child”, respectively) with a complete tree of suitable depth \(N^{(k)}_{2,1}\) (\(N^{(k)}_{2,2}\), respectively). Arguing as in the first part of the proof, we determine \(m_2, N^{(k)}_{2,1}\) and \(N^{(k)}_{2,2}\) in such a way that \([(1/\sqrt{2})^{2/\alpha }]^{(N_1+N^{(k)}_{2,1})}|\cos \theta ^{(1)}_{2^{N_1}+k-1}|^{2/\alpha }\ge 1/(x_{m_2}-\varepsilon )\) and \([(1/\sqrt{2})^{2/\alpha }]^{(N_1+N^{(k)}_{2,2})}|\sin \theta ^{(1)}_{2^{N_1}+k-1}|^{2/\alpha }\ge 1/(x_{m_2}-\varepsilon )\), which are equivalent to \(N^{(k)}_{2,1}\le \log _2(x_{m_2}-\varepsilon )^\alpha +\log _2|\cos \theta ^{(1)}_{2^{N_1}+k-1}|^2-N_1\) and \(N^{(k)}_{2,2}\le \log _2(x_{m_2}-\varepsilon )^\alpha +\log _2|\sin \theta ^{(1)}_{2^{N_1}+k-1}|^2 -N_1\). Then, we define \(m_2\) to be the first index \(m>m_1\) an \(x_m\) satisfies \(\lfloor \log _2(x_m-\varepsilon )^\alpha +\log _2|\beta ^{(1)}_{j,\nu ^{(1)}}|^\alpha \rfloor \ge 1\) for every \(j=1,\dots ,\nu ^{(1)}\). Then, we put \(N^{(k)}_{2,1}:=\lfloor \log _2(x_{m_2}-\varepsilon )^\alpha +\log _2|\cos \theta ^{(1)}_{2^{N_1}+k-1}|^2 \rfloor -N_1\) and \(N^{(k)}_{2,2}:=\lfloor \log _2(x_{m_2}-\varepsilon )^\alpha +\log _2|\sin \theta ^{(1)}_{2^{N_1}+k-1}|^2 \rfloor -N_1\) for \(k=1,\dots ,2^{N_1}\). As to the remaining part of the argument, for the sake of notational simplicity we confine ourselves to giving a detailed description for \(k=1\). We assume that each leaf of the complete tree of depth \(N^{(1)}_{2,1}\), previously appended to the “left child” of the node \(k=1\), germinates. We choose \(\theta ^{(2)}_{2^{N_1+1}+2^{N^{(1)}_{2,1}}+j-2} -\) the angle associated with the \(j\)th germination (\(j=1,\dots ,2^{N^{(1)}_{2,1}}-1\)) \(-\) in such a way that \(1/x_{m_2}\le (1/2)^{(N_1+N^{(1)}_{2,1})/\alpha }|\cos \theta ^{(1)}_{2^{N_1}}|^{2/\alpha }|\cos \theta ^{(2)}_{2^{N_1+1}+2^{N^{(1)}_{2,1}}+j-2}|^{2/\alpha }\le 1/(x_{m_2}-\varepsilon )\). As to its existence, it suffices to note that \(2^{(N_1+N^{(1)}_{2,1})/\alpha }/[(x_{m_2}-\varepsilon )|\cos \theta ^{(1)}_{2^{N_1}}|^{2/\alpha }]\le 1\). We now repeat the procedure for the “right child” of the node \(k=1\) with \(N^{(1)}_{2,2}\) in place of \(N^{(1)}_{2,1}\) and \(\sin \theta ^{(1)}_{2^{N_1}}\) in place of \(\cos \theta ^{(1)}_{2^{N_1}}\). The argument to extend this construction to all the remaining nodes \(k=2,\dots ,2^{N_1}\) is essentially the same and requires only obvious small changes in notation. The resulting tree \(-\) with \(\nu ^{(2)}=2\sum _{k=1}^{2^{N_1}}(2^{N^{(k)}_{2,1}}+2^{N^{(k)}_{2,2}})\) leaves \(-\) is \({ \mathcal {T}}_2\). The angles to be associated with \({ \mathcal {T}}_2\) are \(\theta ^{(2)}_h=\theta ^{(1)}_h\) for \(h=1,\dots ,2^{N_1+1}-1\), while every angle pertaining to the complete trees appended, of depths \(N^{(\cdot )}_{2,1}\) and \(N^{(\cdot )}_{2,2}\) respectively, is equal to \(\pi /4\). It is now easy to show that \(\beta ^{(2)}\), generated by \({ \mathcal {T}}_2\) together with the aforesaid angles, satisfies (5)–(6) with \(K=2\). Moreover, the complete subtree \({ \mathcal {T}}'_2\) of \({ \mathcal {T}}_2\) having \(\nu ^{(1)}=2^{N_1}\) leaves coincides with \({ \mathcal {T}}_1\) and, as to the angles associated with this subtree, one has \(\theta ^{(2)}_h=\theta ^{(1)}_h\) for \(h=1,\dots ,2^{N_1+1}-1\). As a consequence, (5)–(6) are satisfied also for \(K=1\). At this stage, we can state the existence of a tree, the same \({ \mathcal {T}}_2\) as above, and of a nondegenerate closed interval \({\mathcal {I}}_2\) such that: (a) \({\mathcal {I}}_2={\mathcal {I}}'_1\times {\mathcal {I}}_{1,2}\) for which \({\mathcal {I}}'_1\subset {\mathcal {I}}_1\); (b) the \({\hat{\beta }}^{(2)}\)’s associated with the values of \(f_2(\widehat{Y})\) contained in \(\{{ \mathcal {T}}_1\}\times \{{ \mathcal {T}}_2\}\times {\mathcal {I}}_1\times [0,1]^\infty \times {\mathcal {I}}_2\times [0,1]^\infty \) satisfy (5)–(6). Moreover, the event \(\{f_2(\widehat{Y})\in \{{ \mathcal {T}}_1\}\times \{{ \mathcal {T}}_2\}\times {\mathcal {I}}_1\times [0,1]^\infty \times {\mathcal {I}}_2\times [0,1]^\infty \}\) has strictly positive probability. The set \(A_2:=f_2^{-1}(\{{ \mathcal {T}}_1\}\times \{{ \mathcal {T}}_2\}\times {\mathcal {I}}_1\times [0,1]^\infty \times {\mathcal {I}}_2\times [0,1]^\infty )\) is a closed subset of \(M\) and it is easy to conclude, from the definitions of \(f_i\) (\(i=1,2\)), that \(A_2\subset A_1\).

Conclusion. Assuming that the procedure has been repeated in the same way to obtain nonempty closed sets of \(M\supset A_1\supset A_2\supset \cdots \supset A_n\supset \cdots \), the finite intersection principle leads us to conclude that \(\bigcap _{n\ge 1}A_n\) is nonempty. To complete the argument, it suffices to note that \(\widehat{Y}^{-1}\big (\bigcap _{n\ge 1}A_n\big )\ne \emptyset \) and (5)–(6) are satisfied for every \(\omega ^*\) in \(\widehat{Y}^{-1}\big (\bigcap _{n\ge 1}A_n\big )\).

Appendix 2: Proof of Proposition 2

Considering the Skorokhod representation, in order that the law of (3), under \({\mathcal {P}}_t\), converges weakly, it is necessary that \({\widehat{\Lambda }^{(n)}}(\omega )\) converges weakly as \(n\rightarrow +\infty \), for every \(\omega \) in \({\widehat{\Omega }}\). Then, assuming such a convergence, from the central limit theorem for symmetric triangular arrays (see Theorem 24 in Sect. 16.8 of [21]), for every \(\omega \) in \({\widehat{\Omega }}\) there exists a Lévy measure \(\nu (\omega )\) such that

$$\begin{aligned} \nu (\omega )[x,+\infty )=\lim _{n\rightarrow +\infty }\sum _{j=1}^{{\hat{\nu }^{(n)}}(\omega )}{\hat{\lambda }^{(n)}}_j(\omega )[x,+\infty ) \end{aligned}$$
(37)

for every positive \(x\) for which \(\nu (\omega )\{x\}=0\). If (7) is violated, there is \((x_m)_{m\ge 1}\) satisfying (8) and, in view of Proposition 1, there are \((m_n)_{n\ge 1}\) and \(\omega ^*\) in \({\widehat{\Omega }}\) for which (5)–(6) are valid for some \(\varepsilon >0\). There is also a strictly positive \(x_0<1\) for which \(\nu (\omega ^*)\{x_0\}=0\), and (37), with \(\omega =\omega ^*\) and \(x=x_0\), becomes

$$\begin{aligned}&\nu (\omega ^*)[x_0,+\infty )\\&\qquad =\lim _{n\rightarrow +\infty }\sum _{j=1}^{{\hat{\nu }^{(n)}}(\omega ^*)}{\hat{\lambda }^{(n)}}_j(\omega ^*)[x_0,+\infty )\\&\qquad = \lim _{n\rightarrow +\infty }\sum _{j=1}^{{\hat{\nu }^{(n)}}(\omega ^*)}\left[ 1-F^*_0\left( \frac{x_0}{|{\hat{\beta }^{(n)}}_{j,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|}\right) \right] \\&\qquad \ge \limsup _{n\rightarrow +\infty }\sum _{j=1}^{{\hat{\nu }^{(n)}}(\omega ^*)}\left[ 1-F^*_0\left( \frac{1}{|{\hat{\beta }^{(n)}}_{j,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|}\right) \right] \quad (x_0<1)\\&\qquad \ge \limsup _{n\rightarrow +\infty }\sum _{i=1}^{\lfloor \frac{{\hat{\nu }^{(n)}}(\omega ^*)+1}{2}\rfloor }\left[ 1-F^*_0\left( \frac{1}{|{\hat{\beta }^{(n)}}_{2i-1,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|}\right) \right] \frac{|{\hat{\beta }^{(n)}}_{2i-1,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|^\alpha }{|{\hat{\beta }^{(n)}}_{2i-1,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|^\alpha }\\&\qquad \ge \limsup _{n\rightarrow +\infty }\sum _{i=1}^{\lfloor \frac{{\hat{\nu }^{(n)}}(\omega ^*)+1}{2}\rfloor }[1-F^*_0(x_{m_n})](x_{m_n}-\varepsilon )^\alpha |{\hat{\beta }^{(n)}}_{2i-1,{\hat{\nu }^{(n)}}(\omega ^*)}(\omega ^*)|^\alpha \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \hbox {(from}(5) )\\&\qquad \ge a \limsup _{n\rightarrow +\infty } x_{m_n}^\alpha [1-F^*_0(x_{m_n})]\left( \frac{x_{m_n}-\varepsilon }{x_{m_n}}\right) ^\alpha \quad \hbox {(from} (6))\\&\qquad = a \limsup _{n\rightarrow +\infty } \rho (x_{m_n}). \end{aligned}$$

This is a contradiction when (7) is violated.

Appendix 3: Proof of Proposition 3

In view of (3), for every \(B\) in \({\mathcal {B}}({\mathbb {R}})\) we have

$$\begin{aligned} \mu (B,t)&= {\mathcal {P}}_t(V\in B)\\&= {\mathbb {E}}_t\Big ({\mathcal {P}}_t(V\in B{\tilde{\nu }})\Big )\\&= \sum _{n\ge 1}{\mathcal {P}}_t\{{\tilde{\nu }}=n\}{\mathcal {P}}_t\left\{ \sum _{j=1}^n{\tilde{\beta }}_{j,n}X_j\in B\right\} \end{aligned}$$

where the last equality holds since \({\tilde{\nu }}\) is stochastically independent of \((X,{\tilde{i}},{\tilde{\theta }})\). Thus, to prove the proposition, it is enough to show that

$$\begin{aligned} \sup _{n\ge 1} {\mathcal {P}}_t\left\{ \sum _{j=1}^n{\tilde{\beta }}_{j,n}X_j\in I^c_\varepsilon \right\} \le \varepsilon \end{aligned}$$

holds for every \(\varepsilon >0\) and for a suitable interval \(I_\varepsilon \) such as that introduced immediately before the wording of the proposition. The proof is based on inequality (18) applied to \(Y=\sum _{j=1}^n{\tilde{\beta }}_{j,n}X_j\), which has the same p.d. as \(\sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\), thanks to the symmetry of the common distribution \(F^*_0\) of the \(X\)’s. The c.f. of the sum with absolute values of the coefficients, in view of the independence of \(X\) and \({\tilde{\beta }}\) and the mutual independence of the \(X\)’s, is given by \(u\mapsto {\mathbb {E}}_t[\prod _{j=1}^n \varphi _0(u|{\tilde{\beta }}_{j,n}|)]\), and hence

$$\begin{aligned}&{\mathcal {P}}_t\left\{ \left| \sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\right| >C\right\} \le \frac{1}{\Delta }\left( 1+\frac{2\pi }{C\Delta }\right) ^2\int \limits _0^\Delta \left[ 1-{\mathbb {E}}_t\left( \prod _{j=1}^n \varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\right) \right] du\nonumber \\&\quad = {\mathbb {E}}_t \left( \frac{1}{\Delta }\left( 1+\frac{2\pi }{C\Delta }\right) ^2\int \limits _0^\Delta \left[ 1-\prod _{j=1}^n \varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\right] du\right) . \end{aligned}$$
(38)

From now on, the proof proceeds, with slight changes, like in Step 4 in Sect. 3 of [25]. If

$$\begin{aligned} 0\le 1-\varphi ^*_0(u)\le \frac{3}{8}, \end{aligned}$$
(39)

then there is \(\theta \) such that \(0\le |\theta |\le 1\) and

$$\begin{aligned} \log \varphi ^*_0(u)=-\Big \{1-\varphi ^*_0(u)\Big \}+\frac{4\theta }{5}\Big \{1-\varphi ^*_0(u)\Big \}^2. \end{aligned}$$

See Lemma 3 of Sect. 3 in [16]. Obviously, there is \(\Delta _0>0\) so that (39) holds true if \(|u|\le \Delta \le \Delta _0\). For any \(u\) of this kind, since \(|{\tilde{\beta }}_{j,n}|\le 1\) for every \(j\) and \(n\), it turns out that \(u|{\tilde{\beta }}_{j,n}|\le \Delta \) and

$$\begin{aligned} \log \varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)=-\Big \{1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\Big \}+\frac{4\theta }{5}\Big \{1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\Big \}^2 \end{aligned}$$

is valid for every \(j\) and \(n\). Thus, the last integrand in (38) can be developed as follows:

$$\begin{aligned} 1-\prod _{j=1}^n \varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)&= 1-\exp \left( \sum _{j=1}^n\log \varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\right) \\&= 1-\exp \left( \sum _{j=1}^n\left[ -(1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|))+\frac{4}{5}\theta (1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|))^2 \right] \right) \\&\le 1-\exp \left( \sum _{j=1}^n\left[ -(1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|))-\frac{3}{10}(1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|))\right] \right) \\&= 1-\exp \left( -\frac{13}{10}\sum _{j=1}^n(1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|))\right) \le \frac{13}{10}\sum _{j=1}^n(1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)). \end{aligned}$$

This entails

$$\begin{aligned} {\mathcal {P}}_t\left\{ \left| \sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\right| >C\right\} \le \frac{13}{10}\frac{1}{\Delta }\left( 1+\frac{2\pi }{C\Delta }\right) ^2{\mathbb {E}}_t\left( \sum _{j=1}^n\int \limits _0^\Delta \left[ 1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\right] du\right) . \end{aligned}$$

Now, proceeding as in Step 4 of [25], with \(|{\tilde{\beta }}_{j,n}|\) in place of \(1/n^{1/\alpha }\),

$$\begin{aligned}&\int \limits _0^\Delta \Big [1-\varphi ^*_0(u|{\tilde{\beta }}_{j,n}|)\Big ]du\\&\qquad \le 2\Delta ^{\alpha +1}|{\tilde{\beta }}_{j,n}|^\alpha M \int \limits _0^{+\infty }\left( {\mathbb {I}}_{\{(0,\varepsilon )\}}(u)\frac{y^{1-\alpha }}{6}+{\mathbb {I}}_{\{(\varepsilon ,+\infty )\}}(u)\frac{1+u}{u^{\alpha +2}}\right) du \end{aligned}$$

where \(M:=\sup _{x\ge 0}\rho (x)\) which is finite by hypothesis. After noticing that the integral in the right-hand-side is finite, and denoting its value by \(A\), we have

$$\begin{aligned} {\mathcal {P}}_t\left\{ \left| \sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\right| >C\right\} \le \frac{13}{5}MA\Delta ^\alpha \left( 1+\frac{2\pi }{C\Delta }\right) ^2 \end{aligned}$$

and hence, taking \(C:=C_\varepsilon =\Delta ^{-1}\ge \Big (\frac{13}{5}\frac{MA(1+2\pi )^2}{\varepsilon }\Big )^{1/\alpha }\),

$$\begin{aligned} {\mathcal {P}}_t\left\{ \Bigg |\sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\Bigg |>C\right\} \le \varepsilon \end{aligned}$$

for every \(n\), i.e. \(\sup _{n\ge 1} {\mathcal {P}}_t\Big \{\sum _{j=1}^n|{\tilde{\beta }}_{j,n}|X_j\in I^c_\varepsilon \Big \}\le \varepsilon \) with \(I_\varepsilon :=[-C_\varepsilon ,C_\varepsilon ]\).

Appendix 4: Rates of Explosion in Example 2

In the probabilistic setting at the beginning of Sect. 2, let us replace each \({\mathcal {P}}_t\) by \({\bar{\mathcal {P}}}_t\), with the proviso that, under \({\bar{\mathcal {P}}}_t\), all the random elements maintain the previous p.d.’s, with the exception of the \(X_j\)’s whose common p.d.f. becomes \({\bar{F}}^*_{0,t}(u):= F^*_0(u \cdot \xi (t))\) for every \(u>0\) and for \(\xi (t):=x(t)/\varepsilon _1(t)\) where \(t\mapsto \varepsilon _1(t)\) is a strictly positive function on \((0,+\infty )\) such that \(\varepsilon _1(t)\searrow 0\), as \(t\rightarrow +\infty \), and \(t\mapsto x(t)\) is the same as the one specified in each of the examples we are dealing with. Then, for every \(x>0\),

$$\begin{aligned} \mu \Big ((-x\cdot \xi (t), x\cdot \xi (t)),t\Big )=\bar{\mathcal {P}}_t\left\{ \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|X_j\in (-x,x)\right\} . \end{aligned}$$

It is clear that for every \(\varepsilon _1(\cdot )\) such that \(\mu \Big ((-x\cdot \xi (t), x\cdot \xi (t)),t\Big ) \rightarrow 1\), as \(t\rightarrow +\infty , \xi (t)\) represents an upper bound to the rate of explosion \(a_t\). To find such a kind of \(\varepsilon _1(\cdot )\)’s, we can resort to the degenerate convergence criterion provided by the central limit theorem (see, e.g. [27]). Accordingly, if

$$\begin{aligned} \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}\int \limits _{|x|\ge \varepsilon }d\bar{F}^*_{0,t}\left( \dfrac{x}{|{\tilde{\beta }}_{j,{\tilde{\nu }}}|}\right) \right) \rightarrow 0 \end{aligned}$$
(40)

and

$$\begin{aligned} \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}\int \limits _{-\tau }^\tau x^2 d\bar{F}^*_{0,t}\left( \dfrac{x}{|{\tilde{\beta }}_{j,{\tilde{\nu }}}|}\right) \right) \rightarrow 0 \end{aligned}$$
(41)

hold, as \(t\rightarrow +\infty \), for every \(\varepsilon >0\) and for some \(\tau >0\), then there are a strictly increasing and divergent sequence of times \(t_n\) and a version of the conditional distribution of \(\sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|X_j\), given \(({\tilde{\nu }},{\tilde{i}},{\tilde{\theta }})\), which converges weakly to the unit mass \(\delta _0\) at \(0\). (It is worth noting that, for each \(t_n\), the above-mentioned conditional distribution is derived assuming that the reference p.d. on \((\Omega ,{\mathcal {F}})\) is just \(\bar{\mathcal {P}}_{t_n}\).) Then, \(\mu ((-x\cdot \xi (t_n), x\cdot \xi (t_n)),t_n)\rightarrow 1\) for every \(x>0\). Since the same argument can be used to prove that every strictly increasing and divergent sequence of times \(\tau _n\) includes a suitable subsequence \(\tau '_n\) of the same type such that \(\mu ((-x\cdot \xi (\tau '_n), x\cdot \xi (\tau '_n)),t_n)\rightarrow 1\), we get: If (40)–(41) hold, then \(\mu ((-x\cdot \xi (t), x\cdot \xi (t)),t)\rightarrow 1\) for every \(x>0\).

Applying this criterion to the first case considered in Example 2, we have, for sufficiently large values of \(t\),

$$\begin{aligned} \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}\int \limits _{|x|\ge \varepsilon }d\bar{F}^*_{0,t}\left( \dfrac{x}{|{\tilde{\beta }}_{j,{\tilde{\nu }}}|}\right) \right) =\frac{2}{\varepsilon ^\beta \xi (t)^\beta }\bar{\mathbb {E}}_t\sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^\beta =\frac{2}{\varepsilon ^\beta \xi (t)^\beta }\exp [t(2R_{2\beta /\alpha }-1)] \end{aligned}$$

where the last equality follows from Proposition 8 in [22]. Moreover, analogously,

$$\begin{aligned} \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}\int \limits _{-\tau }^\tau x^2 d\bar{F}^*_{0,t}\left( \dfrac{x}{|{\tilde{\beta }}_{j,{\tilde{\nu }}}|}\right) \right) =\dfrac{\tau ^{2-\beta }\beta }{(2-\beta )\xi (t)^\beta }\exp [t(2R_{2\beta /\alpha }-1)]. \end{aligned}$$

At this stage, it is easy to verify that, for \(\beta \rightarrow 0^+\) of \(\beta \rightarrow \alpha ^-\), in order that (40)–(41) be satisfied, it is necessary to take \(\xi (t)=\dfrac{C'}{\varepsilon _1(t)^{1/\beta }}e^{t[2R_{2\beta /\alpha }-1+B(\alpha -\beta )\beta \alpha ]/\beta }\). Moreover, with such a choice of \(\xi (\cdot )\), (40)–(41) turn out to be valid for every \(\beta \) in \((0,\alpha )\).

As far as the second case in Example 2 is concerned, according to the same way of reasoning, we observe that

$$\begin{aligned} \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}\int \limits _{|x|\ge \varepsilon }d\bar{F}^*_{0,t}\left( \dfrac{x}{|{\tilde{\beta }}_{j,{\tilde{\nu }}}|}\right) \right) \le \dfrac{2\log (\varepsilon \xi (t))}{\varepsilon ^\alpha \xi (t)^\alpha }+\dfrac{2}{\varepsilon ^\alpha \xi (t)^\alpha }\bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^\alpha \log \dfrac{1}{|{\tilde{\beta }}_{j,\nu }|}\right) . \end{aligned}$$

The former summand, in the RHS of the above inequality, goes to \(0\) as \(t\rightarrow +\infty \). As to the latter summand,

$$\begin{aligned}&\dfrac{2}{\varepsilon ^\alpha \xi (t)^\alpha }\bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^\alpha \log \dfrac{1}{|{\tilde{\beta }}_{j,\nu }|}\right) \\&\quad \le \dfrac{4}{\alpha \varepsilon ^\alpha \xi (t)^\alpha }\bar{\mathbb {E}}_t\left( \log \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^\alpha \dfrac{1}{|{\tilde{\beta }}_{j,\nu }|^{\alpha /2}}\right) \qquad \left( \hbox {in view of the Jensen inequality,}\right. \\&\left. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \hbox {since} \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^\alpha =1\right) \\&\quad \le \dfrac{4}{\alpha \varepsilon ^\alpha \xi (t)^\alpha }\log \bar{\mathbb {E}}_t\left( \sum _{j=1}^{{\tilde{\nu }}}|{\tilde{\beta }}_{j,{\tilde{\nu }}}|^{\alpha /2}\right) \qquad \quad \qquad \hbox {(from the Jensen inequality)}\\&\quad \le \dfrac{4\varepsilon _1(t)^\alpha }{\alpha \varepsilon ^\alpha c^\alpha }\left( \dfrac{4}{\pi }-1\right) \qquad \qquad \qquad \qquad \qquad \quad \hbox {(from Proposition 8 in} [22]) \end{aligned}$$

which completes the argument to prove (40). Finally, the validity of (41) can be verified, after an integration by parts, in the same way.

Appendix 5: Proof of Lemma 1

The first statement is an immediate consequence of well-known properties of the domain of attraction described, for example, in Sect. 2.6 of [26]. Accordingly, it turns out that \(a_m=(\pi (c_1+c_2))/(2\Gamma (\alpha )\sin (\pi \alpha /2))\) where \(c_1=c_2=\dfrac{K_{1,m}\theta _m}{\alpha }\) and hence

$$\begin{aligned} a_m&= \dfrac{K_{1,m}\theta _m}{\alpha }\frac{\pi }{\Gamma (\alpha )\sin (\pi \alpha /2)}\\&= \dfrac{K_{1,m}\theta _m}{\alpha }\frac{\Gamma (1-\alpha )\sin (\pi \alpha )}{\sin (\pi \alpha /2)}\\&\qquad \qquad \qquad \qquad \qquad \hbox {(by the reflection property of the} \Gamma \hbox {function)}\\&= \dfrac{2}{\alpha }K_{1,m}\theta _m \Gamma (1-\alpha )\cos (\pi \alpha /2)\\&= \dfrac{2}{\alpha }K_{1,m}\theta _m\int \limits _{(0,+\infty )}\frac{\sin x}{x^\alpha }dx \qquad \hbox {(by Euler's formula).} \end{aligned}$$

To prove that \(1-\hat{g}_{1,m}(\xi )=(a_m+v_m(\xi ))\xi ^\alpha \), set \(F_m(x):=1-G_{1,m}(x)=G_{1,m}(-x)\) (\(x>0\)) to write

$$\begin{aligned} 1-\hat{g}_{1,m}(\xi )=\int \limits _0^{+\infty }(e^{i\xi x}-1)dF_m(x)+\int \limits _0^{+\infty }(e^{-i\xi x}-1)dF_m(x). \end{aligned}$$

As to the first integral,

$$\begin{aligned}&\int \limits _0^{+\infty }(e^{i\xi x}-1)dF_m(x)\nonumber \\&\quad = -i\xi \int \limits _0^{+\infty }\Big (\cos (\xi x)+ i \sin (\xi x)\Big )F_m(x)dx\quad \hbox {(by integration by parts)}\nonumber \\&\quad = -i\xi ^\alpha \int \limits _{(0,+\infty )} \cos (x)\dfrac{h_1(x/\xi )}{x^\alpha }dx+\xi ^\alpha \int \limits _{(0,+\infty )} \sin (x)\dfrac{h_1(x/\xi )}{x^\alpha }dx \end{aligned}$$
(42)

where

$$\begin{aligned} h_1(x):= 1-K_{1,m}\left( F^*_0(x)+F^*_0(x_m)-1+\dfrac{\theta _m}{\alpha x_m^\alpha }\right) x^\alpha {\mathbb {I}}_{\{0<x< x_m\}} + \dfrac{K_{1,m}\theta _m}{\alpha }{\mathbb {I}}_{\{x\ge x_m\}}.\nonumber \\ \end{aligned}$$
(43)

Analogously,

$$\begin{aligned}&\int \limits _0^{+\infty }(e^{-i\xi x}-1)dF_m(x)\nonumber \\&\qquad = i\xi ^\alpha \int \limits _{[0,+\infty )} \cos (x)\dfrac{h_1(x/\xi )}{x^\alpha }dx+\xi ^\alpha \int \limits _{[0,+\infty )} \sin (x)\dfrac{h_1(x/\xi )}{x^\alpha }dx. \end{aligned}$$
(44)

Combination of (42), (44) and (43) gives

$$\begin{aligned} \dfrac{1-\hat{g}_{1,m}(\xi )}{\xi ^\alpha }=a_m+v_m(\xi ) \end{aligned}$$

where \(a_m\) is the same as in (13) and \(v_m\) is the same as in the wording of the lemma, i.e.

$$\begin{aligned} v_m(\xi )=\dfrac{2}{\xi ^\alpha }\int \limits _0^{\xi x_m} \sin x\; \omega _{m,\xi }(x)dx-\dfrac{2}{\alpha }K_{1,m}\theta _m\int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx \end{aligned}$$

where \(\omega _{m,\xi }:=1-K_{1,m}\Big [F^*_0\Big (\frac{x}{\xi }\Big )+F^*_0(x_m)-1+\dfrac{\theta _m}{\alpha x_m^\alpha }\Big )\) for \(x<\xi x_m\). Since \(0<\alpha <2\), we have \(\int _0^{\xi x_m}(\sin x)/x^\alpha dx\rightarrow 0\) as \(\xi \rightarrow 0^+\) and, then, the latter summand is \(o(1)\) as \(\xi \rightarrow 0^+\). As to the former,

$$\begin{aligned} \left| \dfrac{2}{\xi ^\alpha }\int \limits _0^{\xi x_m} \sin x \;\omega _{m,\xi }(x)dx\right| \le \dfrac{2}{\xi ^\alpha }\int \limits _0^{\xi x_m} |\sin x| \sup _{t\in [0,x_m]} \omega _{m,\xi }(x)dx. \end{aligned}$$

Observe that \(x\mapsto \omega _{m,\xi }(x)\) is nonnegative, monotonically nonincreasing on \([0,\xi x_m]\) and its value at \(0\) is less or equal to \(1/2\). Then, for \(\xi \le \pi /x_m\)

$$\begin{aligned} \left| \dfrac{2}{\xi ^\alpha }\int \limits _0^{\xi x_m} \sin x \;\omega _{m,\xi }(x) dx\right| \le \dfrac{1}{\xi ^\alpha }\int \limits _0^{\xi x_m}\sin x dx= \dfrac{1}{2}x_m^2\xi ^{2-\alpha }+ o(|\xi |^{3-\alpha }) \end{aligned}$$

which completes the proof that \(v_m\) is \(o(1)\) as \(\xi \rightarrow 0^+\). As to the supremum norm of \(v_m\),

$$\begin{aligned} \left\| v_m\right\|&:= \sup _{\xi \in {\mathbb {R}}^+} |v_m(\xi )|\le \sup _{\xi \in {\mathbb {R}}^+}\left| \dfrac{1}{\xi ^\alpha }\int \limits _0^{\xi x_m} \sin x \;\omega _{m,\xi }(x)dx\right| \nonumber \\&+ \sup _{\xi \in {\mathbb {R}}^+}\left| \dfrac{2}{\alpha }K_{1,m}\theta _m\int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx\right| . \end{aligned}$$
(45)

By the second mean value theorem, there is \(a\) in \([0,\xi x_m)\) such that

$$\begin{aligned} \left| \int \limits _0^{\xi x_m} \omega _{m,\xi }(x)\sin x dx\right| =\left| \omega _{m,\xi }(0)\int \limits _0^a \sin xdx\right| \le 2. \end{aligned}$$

Moreover, from \(|\sin x|\le x\) for any \(x\ge 0\),

$$\begin{aligned} \left| \int \limits _{0}^{\xi x_m} \omega _{m,\xi }(x)\sin xdx\right| \le \omega _{m,\xi }(0)\int \limits _{0}^{\xi x_m}|\sin x|dx\le \dfrac{x_m^2\xi ^2}{2} \end{aligned}$$

and combination of the above bounds gives

$$\begin{aligned} \left| \dfrac{1}{\xi ^\alpha } \int \limits _{0}^{\xi x_m} \omega _{m,\xi }(x)\sin x\;dx\right| \le \min \left\{ \dfrac{x_m^2\xi ^{2-\alpha }}{2},2\xi ^{-\alpha }\right\} \le 2^{1-\alpha }x_m^\alpha . \end{aligned}$$

To bound the latter summand in the RHS of (45), we begin by recalling the obvious inequalities

$$\begin{aligned} \dfrac{2}{((k+1)\pi )^\alpha }\le \left| \int \limits _{k\pi }^{(k+1)\pi } \dfrac{\sin x}{x^\alpha }dx\right| \le \dfrac{2}{(k\pi )^\alpha }\quad (k=1,2,\dots ) \end{aligned}$$

and by setting \(k^*=k^*(\xi ):=\max \{k\in {\mathbb {N}}:\; k\pi \le \xi x_m\}\) for every \(\xi >0\). These inequalities, combined with

$$\begin{aligned} \int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx&= \left| \int \limits _0^{\pi }\dfrac{\sin x}{x^\alpha }dx\right| -\left| \int \limits _{\pi }^{2\pi }\dfrac{\sin x}{x^\alpha }dx\right| + \cdots \\&+ (-1)^{k^*-1}\left| \int \limits _{(k^*-1)\pi }^{k^*\pi }\dfrac{\sin x}{x^\alpha }dx\right| +(-1)^{k^*}\left| \int \limits _{k^*\pi }^{x_m\xi }\dfrac{\sin x}{x^\alpha }dx\right| \end{aligned}$$

yield

$$\begin{aligned} \int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx&\le \int \limits _0^\pi \dfrac{\sin x}{x^\alpha }dx-\dfrac{2}{(2\pi )^\alpha } +\dfrac{2}{(2\pi )^\alpha }+\cdots -\dfrac{2}{(x_m\xi )^\alpha }{\mathbb {I}}_{\lbrace \hbox {odd numbers}\rbrace }(k^*)\\&\le \int \limits _0^\pi \dfrac{\sin x}{x^\alpha }dx \end{aligned}$$

and

$$\begin{aligned} \int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx\ge \dfrac{2}{\pi ^\alpha } -\dfrac{2}{\pi ^\alpha }+\cdots +\dfrac{2}{(x_m\xi )^\alpha }{\mathbb {I}}_{\lbrace \hbox {even numbers}\rbrace }(k^*)\ge 0. \end{aligned}$$

This entails

$$\begin{aligned} \sup _{\xi \in {\mathbb {R}}^+}\left| \dfrac{2}{\alpha }K_{1,m}\theta _m\int \limits _0^{\xi x_m}\dfrac{\sin x}{x^\alpha }dx\right| \le \dfrac{2}{\alpha }K_{1,m}\theta _m\int \limits _0^\pi \dfrac{\sin x}{x^\alpha }dx. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonomi, A., Perversi, E. & Regazzini, E. Probabilistic View of Explosion in an Inelastic Kac Model. J Stat Phys 154, 1292–1324 (2014). https://doi.org/10.1007/s10955-014-0921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0921-2

Keywords

Mathematics Subject Classification

Navigation