Journal of Statistical Physics

, Volume 154, Issue 4, pp 929–949 | Cite as

Exponential Ergodicity of Stochastic Burgers Equations Driven by α-Stable Processes

  • Zhao Dong
  • Lihu Xu
  • Xicheng Zhang


In this work, we prove the strong Feller property and the exponential ergodicity of stochastic Burgers equations driven by α/2-subordinated cylindrical Brownian motions with α∈(1,2). To prove the results, we truncate the nonlinearity and use the derivative formula for SDEs driven by α-stable noises established in (Zhang in Stoch. Process. Appl. 123(4):1213–1228, 2013).


Alpha-stable processes Burgers equations Exponential mixing 



We would like to thank Vahagn Nersesyan for stimulating discussions on exponential mixing. Special thanks are due to the referee for carefully reviewing the paper and giving many useful suggestions. Zhao Dong is supported by ‘Key Laboratory of Random Complex Structures and Data Sciences, AMSS, CAS’ (No. 2008DP173182), ‘Science Fund for Creative Research Groups (10721101)’, 973 Program (2011CB808000), NSFC (Nos. 11271356, 11371041). Xicheng Zhang is supported by NSFs of China (No. 11271294) and Program for New Century Excellent Talents in University.


  1. 1.
    Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165, 211–232 (1994) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bogdan, K., Stós, A., Sztonyk, P.: Harnack inequality for stable processes on d-sets. Stud. Math. 158(2), 163–198 (2003) CrossRefMATHGoogle Scholar
  3. 3.
    Chechkin, A., Gonchar, V., Klafter, J., Metzler, R., Tanatarov, L.: Stationary states of nonlinear oscillators driven by Lévy noise. Chem. Phys. 284, 233–251 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996) CrossRefMATHGoogle Scholar
  5. 5.
    Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1(4), 389–402 (1994) CrossRefMATHGoogle Scholar
  6. 6.
    Dong, Z., Xie, Y.: Ergodicity of stochastic 2D Navier-Stokes equations with Lévy noise. J. Differ. Equ. 251(1), 196–222 (2011) ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Dong, Z., Xu, T.G.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 243(2), 631–678 (2007) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dong, Z., Xu, L., Zhang, X.: Invariance measures of stochastic 2D Navier-Stokes equations driven by α-stable processes. Electron. Commun. Probab. 16, 678–688 (2011) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Eckmann, J.-P., Hairer, M.: Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Commun. Math. Phys. 219(3), 523–565 (2001) ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Flandoli, F., Maslowski, B.: Ergodicity of the 2D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172, 119–141 (1995) ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Goldys, B., Maslowski, B.: Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations. J. Funct. Anal. 226(1), 230–255 (2005) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Gyöngy, I., Nualart, D.: On the stochastic Burgers’ equation in the real line. Ann. Probab. 27(2), 782–802 (1999) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032 (2006) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hairer, M., Mattingly, J.C., Scheutzow, M.: Asymptotic coupling and a weak form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Relat. Fields 149(1), 233–259 (2011) MathSciNetGoogle Scholar
  16. 16.
    Kulik, A.M.: Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Process. Appl. 119(2), 602–632 (2009) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Luedtke, W.D., Landman, U.: Slip diffusion and Lévy flights of an absorbed gold nanocluster. Phys. Rev. Lett. 82(19), 3835–3838 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73(22), 2946–2949 (1994) ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007) CrossRefGoogle Scholar
  20. 20.
    Priola, E., Zabczyk, J.: Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Relat. Fields 149(1–2), 97–137 (2011) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Priola, E., Shirikyan, A., Xu, L., Zabczyk, J.: Exponential ergodicity and regularity for equations with Lévy noise. Stoch. Process. Appl. 122(1), 106–133 (2012) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Romito, M., Xu, L.: Ergodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise. Stoch. Process. Appl. 121(4), 673–700 (2011) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3978 (1993) ADSCrossRefGoogle Scholar
  24. 24.
    Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66. SIAM, Philadelphia (1995) CrossRefMATHGoogle Scholar
  25. 25.
    Wang, F.Y.: Gradient estimate for Ornstein-Uhlenbeck jump processes. Stoch. Process. Appl. 121(3), 466–478 (2011) CrossRefMATHGoogle Scholar
  26. 26.
    Wang, F.Y., Wang, J.: Coupling and strong Feller for jump processes on Banach spaces. arXiv:1111.3795v1
  27. 27.
    Wang, F.Y., Xu, L., Zhang, X.: Gradient estimates for SDEs driven by multiplicative Lévy noise. arXiv:1301.4528
  28. 28.
    Xu, L.: Ergodicity of stochastic real Ginzburg-Landau equation driven by α-stable noises. Stoch. Process. Appl. 123(10), 3710–3736 (2013) CrossRefGoogle Scholar
  29. 29.
    Xu, L., Zegarliński, B.: Existence and exponential mixing of infinite white α-stable systems with unbounded interactions. Electron. J. Probab. 15, 1994–2018 (2010) MATHMathSciNetGoogle Scholar
  30. 30.
    Zhang, X.: Derivative formula and gradient estimate for SDEs driven by α-stable processes. Stoch. Process. Appl. 123(4), 1213–1228 (2013) ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Applied Mathematics, AMSSCASBeijingP.R. China
  2. 2.Department of MathematicsBrunel UniversityUxbridgeUK
  3. 3.Department of Mathematics, Faculty of Science and TechnologyUniversity of MacauTaipaP.R. China
  4. 4.School of Mathematics and StatisticsWuhan UniversityWuhanP.R. China

Personalised recommendations