Journal of Statistical Physics

, Volume 153, Issue 5, pp 801–812 | Cite as

Numerical Solution of Dyson Brownian Motion and a Sampling Scheme for Invariant Matrix Ensembles



The Dyson Brownian Motion (DBM) describes the stochastic evolution of N points on the line driven by an applied potential, a Coulombic repulsion and identical, independent Brownian forcing at each point. We use an explicit tamed Euler scheme to numerically solve the Dyson Brownian motion and sample the equilibrium measure for non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et al. in Ann. Appl. Probab. 22(4):1611–1641, 2012). Nevertheless, in practice the scheme is observed to be stable for time steps of O(1/N 2) and to relax exponentially fast to the equilibrium measure with a rate constant of O(1) independent of N. Further, this convergence rate appears to improve with N in accordance with O(1/N) relaxation of local statistics of the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample N×N Hermitian matrices from the invariant ensembles. The computational cost of generating M independent samples is O(MN 4) with a naive scheme, and O(MN 3logN) when a fast multipole method is used to evaluate the Coulomb interaction.


Random matrix theory Invariant matrix ensembles Dyson Brownian motion (DBM) Explicit tamed Euler scheme 



We thank Percy Deift for several stimulating discussions on numerical computations in random matrix theory. We thank Xiu Yang for assistance with the methods of [24]. This work has been supported in part by NSF grant DMS 07-48482.


  1. 1.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar
  2. 2.
    Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Wavelets, Multilevel Methods and Elliptic PDEs, Leicester, 1996. Numer. Math. Sci. Comput., pp. 1–37. Oxford Univ. Press, New York (1997) Google Scholar
  3. 3.
    Bessis, D., Itzykson, C., Zuber, J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bleher, P., Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150(1), 185–266 (1999) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16(4), 803–866 (2010) MathSciNetMATHGoogle Scholar
  6. 6.
    Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79(270), 871–915 (2010) MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. New York University Courant Institute of Mathematical Sciences, New York (1999) Google Scholar
  8. 8.
    Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, vol. 18. Courant Institute of Mathematical Sciences, New York (2009) Google Scholar
  9. 9.
    Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5), 577–625 (2004) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002) MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Erdős, L., Yau, H.-T.: Universality of local spectral statistics of random matrices. Bull. Am. Math. Soc. 49(3), 377–414 (2012) CrossRefGoogle Scholar
  13. 13.
    Gautschi, W.: Orthogonal polynomials: applications and computation. Acta Numer. 5, 45–119 (1996) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001) (electronic) MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence (2009) MATHGoogle Scholar
  16. 16.
    Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc., Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011) MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992) CrossRefMATHGoogle Scholar
  19. 19.
    Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, Boston (1991) MATHGoogle Scholar
  20. 20.
    Mezzadri, F.: How to generate random matrices from the classical compact groups. Not. Am. Math. Soc. 54(5), 592–604 (2007) MathSciNetMATHGoogle Scholar
  21. 21.
    Pfrang, C.W., Deift, P., Menon, G.: How long does it take to compute the eigenvalues of a random symmetric matrix? arXiv:1203.4635 (2012)
  22. 22.
    Rao, N.R., Olver, S., Trogdon, T.: Sampling invariant ensembles (2013, in preparation) Google Scholar
  23. 23.
    Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17(3), 403–409 (1980) MathSciNetADSCrossRefMATHGoogle Scholar
  24. 24.
    Yang, X., Choi, M., Lin, G., Karniadakis, G.E.: Adaptive ANOVA decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231(4), 1587–1614 (2012) MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations