Advertisement

Journal of Statistical Physics

, Volume 153, Issue 4, pp 641–653 | Cite as

Equilibrium and Non-equilibrium Ising Models by Means of PCA

  • Carlo Lancia
  • Benedetto Scoppola
Article

Abstract

We propose a unified approach to reversible and irreversible pca dynamics, and we show that in the case of 1D and 2D nearest neighbor Ising systems with periodic boundary conditions we are able to compute the stationary measure of the dynamics also when the latter is irreversible. We also show how, according to (P. Dai Pra et al. in J. Stat. Phys. 149(4):722–737, 2012), the stationary measure is very close to the Gibbs for a suitable choice of the parameters of the pca dynamics, both in the reversible and in the irreversible cases. We discuss some numerical aspects regarding this topic, including a possible parallel implementation.

Keywords

Markov chains Probabilistic cellular automata Stationary distribution Equilibrium and non-equilibrium statistical mechanics 

Notes

Acknowledgements

The authors want to thank Elisabetta Scoppola and Paolo Dai Pra for the useful comments and discussions. The first author would like to express appreciation to Alexander Agathos and Salvatore Filippone for the useful comments regarding the cuda implementation; he would also like to address a very special thank to Thomas L. Falch and Johannes Kvam for their gargantuan help in developing and running the code.

References

  1. 1.
    Kozlov, O., Vasilyev, N.: Reversible Markov chains with local interaction. In: Multicomponent Random Systems, p. 451 (1980) Google Scholar
  2. 2.
    Goldstein, S., Kuik, R., Lebowitz, J.L., Maes, C.: From pca’s to equilibrium systems and back. Commun. Math. Phys. 125(1), 71–79 (1989) MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990) MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Maes, C., Shlosman, S.B.: When is an interacting particle system ergodic? Commun. Math. Phys. 151(3), 447–466 (1993) MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74(14), 2694 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80(5–6), 931–970 (1995) MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Cirillo, E.N.M., Nardi, F.R.: Metastability for a stochastic dynamics with a parallel heat bath updating rule. J. Stat. Phys. 110(1–2), 183–217 (2003) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Iovanella, A., Scoppola, B., Scoppola, E.: Some spin glass ideas applied to the clique problem. J. Stat. Phys. 126(4–5), 895–915 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Jona-Lasinio, G.: From fluctuations in hydrodynamics to nonequilibrium thermodynamics. Prog. Theor. Phys. Suppl. 184, 262–275 (2010) ADSCrossRefMATHGoogle Scholar
  10. 10.
    Scoppola, B.: Exact solution for a class of random walk on the hypercube. J. Stat. Phys. 143(3), 413–419 (2011) MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Dai Pra, P., Scoppola, B., Scoppola, E.: Sampling from a gibbs measure with pair interaction by means of pca. J. Stat. Phys. 149(4), 722–737 (2012) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Bremaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues vol. 31. Springer, Berlin (1999) MATHGoogle Scholar
  13. 13.
    Häggström, O.: Finite Markov Chains and Algorithmic Applications vol. 52. Cambridge University Press, Cambridge (2002) CrossRefMATHGoogle Scholar
  14. 14.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS, Providence (2009) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dept. of MathematicsUniversity of Rome Tor VergataRomeItaly

Personalised recommendations