Skip to main content
Log in

Complex Network Structure of Flocks in the Standard Vicsek Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In flocking models, the collective motion of self-driven individuals leads to the formation of complex spatiotemporal patterns. The Standard Vicsek Model (SVM) considers individuals that tend to adopt the direction of movement of their neighbors under the influence of noise. By performing an extensive complex network characterization of the structure of SVM flocks, we show that flocks are highly clustered, assortative, and non-hierarchical networks with short-tailed degree distributions. Moreover, we also find that the SVM dynamics leads to the formation of complex structures with an effective dimension higher than that of the space where the actual displacements take place. Furthermore, we show that these structures are capable of sustaining mean-field-like orientationally ordered states when the displacements are suppressed, thus suggesting a linkage between the onset of order and the enhanced dimensionality of SVM flocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: Science 312, 1402 (2006)

    Article  ADS  Google Scholar 

  2. Szabó, B., Szölösi, G.J., Gönci, B., Jurányi, Z., Selmeczi, D., Vicsek, T.: Phys. Rev. E 74, 061908 (2006)

    Article  ADS  Google Scholar 

  3. Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Phys. Rev. Lett. 98, 158102 (2007)

    Article  ADS  Google Scholar 

  4. Wu, Y., Kaiser, A.D., Jiang, Y., Alber, M.S.: Proc. Natl. Acad. Sci. 106, 1222–1227 (2009)

    Article  ADS  Google Scholar 

  5. Zhang, H.P., Be’er, A., Smith, R.S., Florin, E.L., Swinney, H.L.: Europhys. Lett. 87, 48011 (2009)

    Article  ADS  Google Scholar 

  6. Inada, Y., Kawachi, K.: J. Theor. Biol. 214, 371 (2002)

    Article  Google Scholar 

  7. Couzin, I.D., Krause, J., James, R., Ruxtony, G.D., Franks, N.R.: J. Theor. Biol. 218, 1–11 (2002)

    Article  Google Scholar 

  8. Giuggioli, L., Sevilla, F.J., Kenkre, V.M.: J. Phys. A, Math. Theor. 42, 434004 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Proc. Natl. Acad. Sci. 107, 11865 (2010)

    Article  ADS  Google Scholar 

  10. Nagy, M., Akos, Z., Biro, D., Vicsek, T.: Nature 464, 890 (2010)

    Article  ADS  Google Scholar 

  11. Helbing, D., Farkas, I., Vicsek, T.: Nature 407, 487 (2000)

    Article  ADS  Google Scholar 

  12. Faria, J.J., Dyer, J.R.G., Tosh, C.R., Krause, J.: Anim. Behav. 79, 895 (2010)

    Article  Google Scholar 

  13. Rappel, W.J., Nicol, A., Sarkissian, A., Levine, H., Loomis, W.F.: Phys. Rev. Lett. 83, 1247 (1999)

    Article  ADS  Google Scholar 

  14. Wu, X.L., Libchaber, A.: Phys. Rev. Lett. 84, 3017 (2000)

    Article  ADS  Google Scholar 

  15. Theraulaz, G., Bonabeau, E., Nicholis, S.C., Sole, R.V., Fourcassié, V., Blanco, S., Fournier, R., Joly, J.L., Fernández, P., Grimal, A., Dalle, P., Deneubourg, J.L.: Proc. Natl. Acad. Sci. 99, 9645 (2002)

    Article  ADS  MATH  Google Scholar 

  16. Feder, T.: Phys. Today 60, 28 (2007)

    ADS  Google Scholar 

  17. Grančič, P., Štěpánek, F.: Phys. Rev. E 84, 021925 (2011)

    Article  ADS  Google Scholar 

  18. Vicsek, T., Zafeiris, A.: Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  19. Vicsek, T., Czirók, A., Ben-Jacob, E., Shochet, O.: Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  20. Grégoire, G., Chaté, H.: Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  21. Aldana, M., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phys. Rev. Lett. 98, 095702 (2007)

    Article  ADS  Google Scholar 

  22. Baglietto, G., Albano, E.V.: Phys. Rev. E 80, 050103(R) (2009)

    Article  ADS  Google Scholar 

  23. Baglietto, G., Albano, E.V., Candia, J.: Interface Focus 2, 708 (2012)

    Article  Google Scholar 

  24. Aldana, M., Huepe, C.: J. Stat. Phys. 112, 135 (2003)

    Article  MATH  Google Scholar 

  25. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, London (1992)

    MATH  Google Scholar 

  26. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Mermin, N.D., Wagner, H.: Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  28. Mermin, N.D.: J. Math. Phys. 8, 1061 (1967)

    Article  ADS  Google Scholar 

  29. Cassi, D.: Phys. Rev. Lett. 68, 3631 (1992)

    Article  ADS  Google Scholar 

  30. Toner, J., Tu, Y.: Phys. Rev. Lett. 75, 4326 (1995)

    Article  ADS  Google Scholar 

  31. Baglietto, G., Albano, E.V.: Comput. Phys. Commun. 180, 527 (2009)

    Article  ADS  Google Scholar 

  32. Nagy, M., Daruka, I., Vicsek, T.: Physica A 373, 445 (2007)

    Article  ADS  Google Scholar 

  33. Aldana, M., Larralde, H., Vázquez, B.: Int. J. Mod. Phys. B 23, 3661 (2009)

    Article  ADS  MATH  Google Scholar 

  34. Baglietto, G., Albano, E.V.: Phys. Rev. E 78, 021125 (2008)

    Article  ADS  Google Scholar 

  35. Hoshen, J., Kopelman, R.: Phys. Rev. B 14, 3438 (1976)

    Article  ADS  Google Scholar 

  36. Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  37. Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, London (2007)

    Book  Google Scholar 

  38. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, London (2010)

    Book  Google Scholar 

  39. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Genome Res. 13, 2498 (2003)

    Article  Google Scholar 

  40. Huepe, C., Aldana, M.: Phys. Rev. Lett. 92, 168701 (2004)

    Article  ADS  Google Scholar 

  41. Albert, R., Barabási, A.L.: Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  42. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  43. Watts, D.J., Strogatz, S.H.: Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  44. Dorogovtsev, S.N., Mendes, J.F.F.: Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  45. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Science 297, 1551 (2002)

    Article  ADS  Google Scholar 

  46. Ravasz, E., Barabási, A.L.: Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  47. Newman, M.E.J.: Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  48. Newman, M.E.J.: Phys. Rev. E 67, 026126 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  49. Callaway, D.S., Hopcroft, J.E., Kleinberg, J.M., Newman, M.E.J., Strogatz, S.H.: Phys. Rev. E 64, 041902 (2001)

    Article  ADS  Google Scholar 

  50. Bordogna, C.M., Albano, E.V.: Phys. Rev. Lett. 87, 118701 (2001)

    Article  ADS  Google Scholar 

  51. Candia, J.: J. Stat. Mech. P09001 (2007)

  52. Tu, Y., Toner, J., Ulm, M.: Phys. Rev. Lett. 80, 4819 (1998)

    Article  ADS  Google Scholar 

  53. Dossetti, V., Sevilla, F.J., Kenkre, V.M.: Phys. Rev. E 79, 051115 (2009)

    Article  ADS  Google Scholar 

  54. Privman, V. (ed.): Finite Size Scaling and Numerical Simulations of Statistical Systems. World Scientific, Singapore (1990)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to F. Vázquez for fruitful discussions. This work was financially supported by CONICET, UNLP and ANPCyT (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Candia.

Appendix

Appendix

Here we derive Eq. (10) for the mean clustering coefficient of a vertex in the bulk of a large cluster. Large flocks generally consist of a core that contains most of the particles and links between them distributed in a highly uniform fashion. Indeed, the near-uniform distribution of nodes and links within flock cores is not only spatial but it also manifests itself in the network’s structure, as for instance shown by the short-tailed degree distributions in Fig. 4. Based on these observations and for the sake of simplicity, we assume that particles in the bulk are distributed homogeneously with a constant density ρ in.

Let us recall that the clustering coefficient for node i with k i links is defined as C i =2n i /(k i (k i −1)), where n i is the number of links between the k i neighbors of i. Since particles are distributed uniformly within the interaction radius R 0=1, it follows straightforwardly that k i =πρ in−1. In order to evaluate n i , let us focus our attention on one of the neighbor nodes of i, which we call node j. The number of nodes that are neighbors of i and j simultaneously is, on average, given by

$$ n_{ij}=\rho_{\mathrm{in}}A_{ij}-2, $$
(14)

where A ij is the area of the intersection between the interaction circles centered at i and j. A ij , which depends only on the distance r between i and j, can be expressed as

$$ A_{ij}(r)= 2\int_{-\sqrt{1-\frac{r^{2}}{4}}}^{\sqrt{1-\frac {r^{2}}{4}}}\biggl( \sqrt{1-x^{2}}-\frac{r}{2}\biggr) dx. $$
(15)

Therefore, the number of links between the k i neighbors of i is obtained by replacing Eq. (15) in Eq. (14) and integrating ρ in n ij /2 over the unit circle (notice that we divide by 2 because we are dealing with undirected links, so we must count each pair of neighbor nodes just once), i.e.

$$ n_i=\pi\rho_{\mathrm{in}}\int_0^1 rn_{ij}(r)dr. $$
(16)

Solving the integrals and replacing in the definition of the clustering coefficient, we finally arrive at

$$ C_\infty= \frac{[(4\pi-3\sqrt{3})\rho_{\mathrm{in}}-8]\pi\rho_{\mathrm{in}}}{4(\pi\rho _{\mathrm{in}}-1)(\pi\rho_{\mathrm{in}}-2)}, $$
(17)

which provides an analytic solution for the mean clustering coefficient of particles in the bulk of a large cluster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglietto, G., Albano, E.V. & Candia, J. Complex Network Structure of Flocks in the Standard Vicsek Model. J Stat Phys 153, 270–288 (2013). https://doi.org/10.1007/s10955-013-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0827-4

Keywords

Navigation