Advertisement

Journal of Statistical Physics

, Volume 153, Issue 2, pp 270–288 | Cite as

Complex Network Structure of Flocks in the Standard Vicsek Model

  • Gabriel Baglietto
  • Ezequiel V. Albano
  • Julián Candia
Article

Abstract

In flocking models, the collective motion of self-driven individuals leads to the formation of complex spatiotemporal patterns. The Standard Vicsek Model (SVM) considers individuals that tend to adopt the direction of movement of their neighbors under the influence of noise. By performing an extensive complex network characterization of the structure of SVM flocks, we show that flocks are highly clustered, assortative, and non-hierarchical networks with short-tailed degree distributions. Moreover, we also find that the SVM dynamics leads to the formation of complex structures with an effective dimension higher than that of the space where the actual displacements take place. Furthermore, we show that these structures are capable of sustaining mean-field-like orientationally ordered states when the displacements are suppressed, thus suggesting a linkage between the onset of order and the enhanced dimensionality of SVM flocks.

Keywords

Self-propelled particle systems Collective motion Complex networks Vicsek model 

Notes

Acknowledgements

We are very grateful to F. Vázquez for fruitful discussions. This work was financially supported by CONICET, UNLP and ANPCyT (Argentina).

References

  1. 1.
    Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: Science 312, 1402 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    Szabó, B., Szölösi, G.J., Gönci, B., Jurányi, Z., Selmeczi, D., Vicsek, T.: Phys. Rev. E 74, 061908 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Phys. Rev. Lett. 98, 158102 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Wu, Y., Kaiser, A.D., Jiang, Y., Alber, M.S.: Proc. Natl. Acad. Sci. 106, 1222–1227 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, H.P., Be’er, A., Smith, R.S., Florin, E.L., Swinney, H.L.: Europhys. Lett. 87, 48011 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Inada, Y., Kawachi, K.: J. Theor. Biol. 214, 371 (2002) CrossRefGoogle Scholar
  7. 7.
    Couzin, I.D., Krause, J., James, R., Ruxtony, G.D., Franks, N.R.: J. Theor. Biol. 218, 1–11 (2002) CrossRefGoogle Scholar
  8. 8.
    Giuggioli, L., Sevilla, F.J., Kenkre, V.M.: J. Phys. A, Math. Theor. 42, 434004 (2009) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Proc. Natl. Acad. Sci. 107, 11865 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Nagy, M., Akos, Z., Biro, D., Vicsek, T.: Nature 464, 890 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Helbing, D., Farkas, I., Vicsek, T.: Nature 407, 487 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    Faria, J.J., Dyer, J.R.G., Tosh, C.R., Krause, J.: Anim. Behav. 79, 895 (2010) CrossRefGoogle Scholar
  13. 13.
    Rappel, W.J., Nicol, A., Sarkissian, A., Levine, H., Loomis, W.F.: Phys. Rev. Lett. 83, 1247 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    Wu, X.L., Libchaber, A.: Phys. Rev. Lett. 84, 3017 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    Theraulaz, G., Bonabeau, E., Nicholis, S.C., Sole, R.V., Fourcassié, V., Blanco, S., Fournier, R., Joly, J.L., Fernández, P., Grimal, A., Dalle, P., Deneubourg, J.L.: Proc. Natl. Acad. Sci. 99, 9645 (2002) ADSCrossRefMATHGoogle Scholar
  16. 16.
    Feder, T.: Phys. Today 60, 28 (2007) ADSGoogle Scholar
  17. 17.
    Grančič, P., Štěpánek, F.: Phys. Rev. E 84, 021925 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Vicsek, T., Zafeiris, A.: Phys. Rep. 517, 71 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Shochet, O.: Phys. Rev. Lett. 75, 1226 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    Grégoire, G., Chaté, H.: Phys. Rev. Lett. 92, 025702 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Aldana, M., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phys. Rev. Lett. 98, 095702 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    Baglietto, G., Albano, E.V.: Phys. Rev. E 80, 050103(R) (2009) ADSCrossRefGoogle Scholar
  23. 23.
    Baglietto, G., Albano, E.V., Candia, J.: Interface Focus 2, 708 (2012) CrossRefGoogle Scholar
  24. 24.
    Aldana, M., Huepe, C.: J. Stat. Phys. 112, 135 (2003) CrossRefMATHGoogle Scholar
  25. 25.
    Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, London (1992) MATHGoogle Scholar
  26. 26.
    Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  27. 27.
    Mermin, N.D., Wagner, H.: Phys. Rev. Lett. 17, 1133 (1966) ADSCrossRefGoogle Scholar
  28. 28.
    Mermin, N.D.: J. Math. Phys. 8, 1061 (1967) ADSCrossRefGoogle Scholar
  29. 29.
    Cassi, D.: Phys. Rev. Lett. 68, 3631 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    Toner, J., Tu, Y.: Phys. Rev. Lett. 75, 4326 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    Baglietto, G., Albano, E.V.: Comput. Phys. Commun. 180, 527 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    Nagy, M., Daruka, I., Vicsek, T.: Physica A 373, 445 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    Aldana, M., Larralde, H., Vázquez, B.: Int. J. Mod. Phys. B 23, 3661 (2009) ADSCrossRefMATHGoogle Scholar
  34. 34.
    Baglietto, G., Albano, E.V.: Phys. Rev. E 78, 021125 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    Hoshen, J., Kopelman, R.: Phys. Rev. B 14, 3438 (1976) ADSCrossRefGoogle Scholar
  36. 36.
    Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006) MATHGoogle Scholar
  37. 37.
    Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, London (2007) CrossRefGoogle Scholar
  38. 38.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, London (2010) CrossRefGoogle Scholar
  39. 39.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Genome Res. 13, 2498 (2003) CrossRefGoogle Scholar
  40. 40.
    Huepe, C., Aldana, M.: Phys. Rev. Lett. 92, 168701 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    Albert, R., Barabási, A.L.: Rev. Mod. Phys. 74, 47 (2002) ADSCrossRefMATHGoogle Scholar
  42. 42.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Rev. Mod. Phys. 80, 1275 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    Watts, D.J., Strogatz, S.H.: Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    Dorogovtsev, S.N., Mendes, J.F.F.: Adv. Phys. 51, 1079 (2002) ADSCrossRefGoogle Scholar
  45. 45.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Science 297, 1551 (2002) ADSCrossRefGoogle Scholar
  46. 46.
    Ravasz, E., Barabási, A.L.: Phys. Rev. E 67, 026112 (2003) ADSCrossRefGoogle Scholar
  47. 47.
    Newman, M.E.J.: Phys. Rev. Lett. 89, 208701 (2002) ADSCrossRefGoogle Scholar
  48. 48.
    Newman, M.E.J.: Phys. Rev. E 67, 026126 (2003) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Callaway, D.S., Hopcroft, J.E., Kleinberg, J.M., Newman, M.E.J., Strogatz, S.H.: Phys. Rev. E 64, 041902 (2001) ADSCrossRefGoogle Scholar
  50. 50.
    Bordogna, C.M., Albano, E.V.: Phys. Rev. Lett. 87, 118701 (2001) ADSCrossRefGoogle Scholar
  51. 51.
    Candia, J.: J. Stat. Mech. P09001 (2007) Google Scholar
  52. 52.
    Tu, Y., Toner, J., Ulm, M.: Phys. Rev. Lett. 80, 4819 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    Dossetti, V., Sevilla, F.J., Kenkre, V.M.: Phys. Rev. E 79, 051115 (2009) ADSCrossRefGoogle Scholar
  54. 54.
    Privman, V. (ed.): Finite Size Scaling and Numerical Simulations of Statistical Systems. World Scientific, Singapore (1990) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gabriel Baglietto
    • 1
    • 2
    • 3
  • Ezequiel V. Albano
    • 1
    • 4
  • Julián Candia
    • 1
    • 5
  1. 1.Instituto de Física de Líquidos y Sistemas Biológicos, CONICETUNLPLa PlataArgentina
  2. 2.Facultad de IngenieríaUNLPLa PlataArgentina
  3. 3.Physics LaboratoryIstituto Superiore di SanitàRomaItaly
  4. 4.Departamento de Física, Facultad de Ciencias ExactasUNLPLa PlataArgentina
  5. 5.Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations