Skip to main content
Log in

A Model for the Shapes of Advected Triangles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Three particles floating on a fluid surface define a triangle. The aim of this paper is to characterise the shape of the triangle, defined by two of its angles, as the three vertices are subject to a complex or turbulent motion. We consider a simple class of models for this process, involving a combination of a random strain of the fluid and Brownian motion of the particles. Following D.G. Kendall, we map the space of triangles to a sphere, whose equator corresponds to degenerate triangles with colinear vertices, with equilaterals at the poles. We map our model to a diffusion process on the surface of the sphere and find an exact solution for the shape distribution. Whereas the action of the random strain tends to make the shape of the triangles infinitely elongated, in the presence of a Brownian diffusion of the vertices, the model has an equilibrium distribution of shapes. We determine here exactly this shape distribution in the simple case where the increments of the strain are diffusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Castiglione, P., Pumir, A.: Evolution of triangles in a two-dimensional turbulent flow. Phys. Rev. E 64, 056303 (2001)

    Article  ADS  Google Scholar 

  2. Cressman, J.R., Davoudi, J., Goldburg, W.I., Schumacher, J.: Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys. 6, 53 (2004)

    Article  ADS  Google Scholar 

  3. de Chaumont Quitry, A., Kelley, D.H., Ouellette, N.T.: Mechanisms driving shape distortion in two-dimensional flow. Europhys. Lett. 94, 64006 (2011)

    Article  ADS  Google Scholar 

  4. Kendall, D.G.: The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977)

    Article  Google Scholar 

  5. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kendall, W.S.: A diffusion model for Bookstein triangle shape. Adv. Appl. Probab. 30, 317–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pumir, A., Shraiman, B., Chertkov, M.: Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett. 85, 5324 (2000)

    Article  ADS  Google Scholar 

  8. Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A., Toschi, F.: Multiparticle dispersion in fully developed turbulence. Phys. Fluids 17, 111701 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Xu, H., Ouellette, N.T., Bodenschatz, E.: Evolution of geometric structures in intense turbulence. New J. Phys. 10, 013012 (2008)

    Article  ADS  Google Scholar 

  10. Hackl, J.F., Yeung, P.K., Sawford, B.L.: Multi-particle and tetrad statistics in numerical simulations of turbulent relative dispersion. Phys. Fluids 23, 065103 (2011)

    Article  ADS  Google Scholar 

  11. Mydlarski, L., Pumir, A., Shraiman, B.I., Siggia, E.D., Warhaft, Z.: Structure and multi-point correlators for turbulent advection. Phys. Rev. Lett. 81, 4373–4376 (1998)

    Article  ADS  Google Scholar 

  12. Shraiman, B.I., Siggia, E.D.: Anomalous scaling for a passive scalar near the Batchelor limit. Phys. Rev. E 57, 2965–2977 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  13. Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405, 639–646 (2000)

    Article  ADS  Google Scholar 

  14. Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in turbulence. Rev. Mod. Phys. 73, 913–975 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gat, O., Zeitak, R.: Multiscaling in passive scalar advection as stochastic shape dynamics. Phys. Rev. E 57, 5511–5519 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. Balkovisky, E., Chertkov, M., Kolokolov, I., Lebedev, V.: Fourth-order correlation function of randomly advected passive scalar. JETP Lett. 61, 1049 (1995)

    ADS  Google Scholar 

  17. Pumir, A., Shraiman, B., Siggia, E.D.: Perturbation theory for δ-correlated model of passive scalar advection near the Batchelor limit. Phys. Rev. E 55, R1263–1266 (1997)

    Article  ADS  Google Scholar 

  18. Chertkov, M., Kolokolov, I., Lebedev, V.: Strong effect of weak diffusion on scalar turbulence at large scales. Phys. Fluids 19, 101703 (2007)

    Article  ADS  Google Scholar 

  19. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 2nd edn. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Guichardaz for his comments on our manuscript. A.P. has been supported by the grant from A.N.R. “TEC 2”. We acknowledge the support of the European COST Action MP0806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Pumir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pumir, A., Wilkinson, M. A Model for the Shapes of Advected Triangles. J Stat Phys 152, 934–953 (2013). https://doi.org/10.1007/s10955-013-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0789-6

Keywords

Navigation