Journal of Statistical Physics

, Volume 152, Issue 4, pp 724–741 | Cite as

Strategic Interaction in Trend-Driven Dynamics



We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.


Mean-field interaction Multi-agent models Phase transition Strategic games 



Special thanks go to Fulvio Fontini for the fruitful discussions. The authors, also, thank Roberto Casarin, Gustav Feichtinger, Marco LiCalzi, Antonio Nicolò and Paolo Pellizzari. The authors acknowledge the financial support of the Research Grant of the Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2008, Probability and Finance, and PRIN 2009, Complex Stochastic Models and their Applications in Physics and Social Sciences. We are responsible for all the remaining errors.


  1. 1.
    Barucci, E., Tolotti, M.: Social interaction and conformism in a random utility model. J. Econ. Dyn. Control 36(12), 1855–1866 (2012) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138(1–3), 270–290 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bianchi, A., Bovier, A., Ioffe, D.: Sharp asymptotics for metastability in the random field Curie-Weiss model. Electron. J. Probab. 14(53), 1541–1603 (2009) MathSciNetMATHGoogle Scholar
  4. 4.
    Blume, L.E.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5(3), 387–424 (1993) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Blume, L.E., Durlauf, S.: Equilibrium concepts for social interaction models. Int. Game Theory Rev. 5(3), 193–209 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Borkar, V.S.: Probability Theory: An Advanced Course. Springer, New York (1995) MATHGoogle Scholar
  7. 7.
    Bouchaud, J.P., Cont, R.: Herd behavior and aggregate fluctuations in financial markets. Macroecon. Dyn. 4, 170–196 (2000) MATHGoogle Scholar
  8. 8.
    Brock, W., Durlauf, S.: Discrete choice with social interactions. Rev. Econ. Stud. 68(2), 235–260 (2001) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 17(26), 1–40 (2012) MathSciNetGoogle Scholar
  10. 10.
    Collet, F., Dai Pra, P., Sartori, E.: A simple mean field model for social interactions: dynamics, fluctuations, criticality. J. Stat. Phys. 139(5), 820–858 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Commun. Math. Phys. 118, 531–567 (1988) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Cont, R., Ghoulmie, F., Nadal, J.P.: Heterogeneity and feedback in an agent-based market model. J. Phys. Condens. Matter 17, 1259–1268 (2005) CrossRefGoogle Scholar
  13. 13.
    Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84(3–4), 735–772 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M.: Large portfolio losses: a dynamic contagion model. Ann. Appl. Probab. 19(1), 347–394 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dawson, D.A., Gärtner, J.: Large deviations for the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Garnier, J., Papanicolaou, G., Yang, T.-W.: Large deviations for a mean field model of systemic risk. SIAM J. Financ. Math. 4(1), 151–184 (2013) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gärtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137(1), 197–248 (1988) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gomes, D.A., Mohr, J., Souza, R.R.: Discrete time, finite state space mean field games. J. Math. Pures Appl. 93(3), 308–328 (2010) MathSciNetMATHGoogle Scholar
  19. 19.
    Horst, U.: Dynamic systems of social interactions. J. Econ. Behav. Organ. 73(2), 158–170 (2010) CrossRefGoogle Scholar
  20. 20.
    Kipnis, C.: Processus de champ moyen: existence, unicite mesures invariantes et limites thermodynamiques. Stochastics 5(1–2), 93–106 (1981) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jackson, M.O.: Research opportunities in social and economic networks. American Economic Association, ten years and beyond: economists answer NSF’s call for long-term research agendas (2010). Available at SSRN.
  22. 22.
    Nadal, J.P., Phan, D., Gordon, M.B., Vannimenus, J.: Multiple equilibria in a monopoly market with heterogeneous agents and externalities. Quant. Finance 5(6), 557–568 (2005) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Tanaka, H., Hitsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J. 11(2), 415–423 (1981) MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PadovaPadovaItaly
  2. 2.Department of ManagementCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations