Journal of Statistical Physics

, Volume 152, Issue 3, pp 534–540 | Cite as

Emergence of the Sierpinski Gasket in Coin-Dividing Problems



The present paper proposes a generation mechanism of a fractal pattern related to a coin system. The problem is formulated in terms of a situation of dividing coins among people. Remarkably, a fractal pattern like the Sierpinski gasket is obtained, by marking all the possible division of coins as a point set. The mechanism for this fractal structure is reduced to nested relations, owing to a hierarchical property of coin denominations. Relevance to dynamical systems is also discussed.


Fractal Coin dividing Sierpinski gasket Dynamical system Chaos game 



The author is grateful to Dr. Makoto Katori, Dr. Yoshihiro Yamazaki, and Dr. Jun-ichi Wakita for their fruitful and stimulating discussions and comments.


  1. 1.
    Mandelbrot, B.: The Fractal Geometry of Nature. WH Freeman, San Francisco (1982) MATHGoogle Scholar
  2. 2.
    Richardella, A., Roushan, P., Mack, S., Zhou, B., Huse, D.A., Awschalom, D.D., Yazdani, A.: Science 327, 665 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Matsushita, M., Fujikawa, H.: Physica A 168, 498 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    Martinez, V.J., Saar, E.: Statistics of the Galaxy Distribution. CRC, Boca Raton (2001) CrossRefGoogle Scholar
  5. 5.
    Kobayashi, N., Yamazaki, Y., Kuninaka, H., Katori, M., Matsushita, M., Matsushita, S., Chiang, L.-Y.: J. Phys. Soc. Jpn. 80, 074003 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    Feder, J.: Fractals. Plenum, New York (1988) MATHGoogle Scholar
  7. 7.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996) MATHGoogle Scholar
  8. 8.
    Sornette, D.: Critical Phenomena in Natural Science. Springer, Berlin (2004) Google Scholar
  9. 9.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) MATHGoogle Scholar
  10. 10.
    Yamamoto, K., Yamazaki, Y.: Chaos Solitons Fractals 45, 1058 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Matsushita, M.: J. Phys. Soc. Jpn. 54, 857 (1985) ADSCrossRefGoogle Scholar
  12. 12.
    Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (1992) CrossRefGoogle Scholar
  13. 13.
    Jeffrey, H.J.: Nucleic Acids Res. 18, 2163 (1990) CrossRefGoogle Scholar
  14. 14.
    Yu, Z.-G., Anh, V., Lau, K.-S.: J. Theor. Biol. 226, 341 (2004) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Matsushita, R., Gleria, I., Figueiredo, A., Da Silva, S.: Physica A 378, 427 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. A K Peters, Boston (1993) MATHGoogle Scholar
  17. 17.
    Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, New York (2010) MATHCrossRefGoogle Scholar
  18. 18.
    Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993) MATHGoogle Scholar
  19. 19.
    Ball, P.: Branches: Nature’s Patterns: A Tapestry in Three Parts. Oxford University Press, Oxford (2009) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and EngineeringChuo UniversityTokyoJapan

Personalised recommendations