Journal of Statistical Physics

, Volume 149, Issue 5, pp 964–968 | Cite as

Rigorous Self-organised Criticality in the Modified Bak-Sneppen Model

  • Ronald Meester
  • Anish Sarkar


We prove that a modified version of the Bak-Sneppen model obeys power law behaviour for avalanche duration and size. We do this through a coupling with a suitable branching process which is known to have power law behaviour at criticality.


Bak-Sneppen model Self-organised criticality Avalanche Power law 


  1. 1.
    Bak, P.: How Nature Works. Springer, Berlin (1996) MATHGoogle Scholar
  2. 2.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 74, 4083 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    Ben-Ari, I., Matzavinos, A., Roitershtein, A.: On a species survival model. Electron. Commun. Probab. 16, 226–233 (2011) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Guiol, H., Machado, F.P., Schinazi, R.B.: A stochastic model of evolution. Markov Process. Relat. Fields 17, 253–258 (2011) MathSciNetMATHGoogle Scholar
  5. 5.
    Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963) MATHCrossRefGoogle Scholar
  6. 6.
    Jensen, H.J.: In: Self-organized Criticality. Cambridge Lecture Notes in Physics (1998) CrossRefGoogle Scholar
  7. 7.
    Meester, R., Znamenski, D.: Limit behavior of the Bak-Sneppen evolution model. Ann. Probab. 31, 1986–2002 (2003) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Meester, R., Znamenski, D.: Critical thresholds and the limit distribution in the Bak-Sneppen evolution model. Commun. Math. Phys. 246, 63–86 (2004) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsVU Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Indian Statistical InstituteNew DelhiIndia

Personalised recommendations