Journal of Statistical Physics

, Volume 149, Issue 5, pp 773–802 | Cite as

Thermodynamic Transformations of Nonequilibrium States

  • Lorenzo Bertini
  • Davide Gabrielli
  • Giovanni Jona-Lasinio
  • Claudio Landim


We consider a macroscopic system in contact with boundary reservoirs and/or under the action of an external field. We discuss the case in which the external forcing depends explicitly on time and drives the system from a nonequilibrium state to another one. In this case the amount of energy dissipated along the transformation becomes infinite when an unbounded time window is considered. Following the general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a natural definition of a renormalized work. We then discuss its thermodynamic relevance by showing that it satisfies a Clausius inequality and that quasi static transformations minimize the renormalized work. In addition, we connect the renormalized work to the quasi potential describing the fluctuations in the stationary nonequilibrium ensemble. The latter result provides a characterization of the quasi potential that does not involve rare fluctuations.


Nonequilibrium stationary states Thermodynamic transformations Clausius inequality Large fluctuations Relative entropy 



We are grateful to J. Lebowitz for his insistence on a thermodynamic characterization of the quasi potential. We acknowledge stimulating discussions with T. Komatsu, N. Nakagawa, S. Sasa, and H. Tasaki. We also thank F. Flandoli for useful comments on hydrodynamic equations with time dependent boundary conditions. We thank a referee for several comments and questions which have led to an improvement of our paper.


  1. 1.
    Appert-Rolland, C., Derrida, B., Lecomte, V., van Wijland, F.: Universal cumulants of the current in diffusive systems on a ring. Phys. Rev. E 78, 021122 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Aurell, E., Gawedzki, K., Mejía-Monasterio, C., Mohayaee, R., Muratore-Ginanneschi, P.: Refined second law of thermodynamics for fast random processes. Preprint. arXiv:1201.3207 (2012)
  3. 3.
    Bahadoran, C.: On the convergence of entropy for stationary exclusion processes with open boundaries. J. Stat. Phys. 126, 1069–1082 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Bernardin, C., Landim, C.: Entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes. J. Stat. Phys. 141, 1014–1038 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 110, 635–675 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Minimum dissipation principle in stationary non-equilibrium states. J. Stat. Phys. 116, 831–841 (2004) ADSMATHCrossRefGoogle Scholar
  8. 8.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Non equilibrium current fluctuations in stochastic lattice gases. J. Stat. Phys. 123, 237–276 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp. 2007, P07014 (2007) CrossRefGoogle Scholar
  10. 10.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 123, 857–872 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Lagrangian phase transitions in nonequilibrium thermodynamic systems. J. Stat. Mech. Theory Exp. 2010, L11001 (2010) CrossRefGoogle Scholar
  12. 12.
    Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transition. Phys. Rev. E 72, 066110 (2005) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Boksenbojm, E., Maes, C., Netoc̆ný, K., Pes̆ek, J.: Heat capacity in nonequilibrium steady states. Europhys. Lett. 96, 40001 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Derrida, B.: Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 2007, P07023 (2007) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Derrida, B., Lebowitz, J., Speer, E.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    De Masi, A., Ferrari, P.: A remark on the hydrodynamics of the zero-range processes. J. Stat. Phys. 36, 81–87 (1984) ADSMATHCrossRefGoogle Scholar
  17. 17.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998) MATHCrossRefGoogle Scholar
  18. 18.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998) MATHCrossRefGoogle Scholar
  19. 19.
    Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999) MATHGoogle Scholar
  21. 21.
    Komatsu, T., Nakagawa, N.: Expression for the stationary distribution in nonequilibrium steady states. Phys. Rev. Lett. 100, 030601 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Komatsu, T., Nakagawa, N., Sasa, S., Tasaki, H.: Entropy and nonlinear nonequilibrium thermodynamic relation for heat conducting steady states. J. Stat. Phys. 142, 127–153 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Vol. 5: Statistical Physics, 3rd edn. Pergamon Press, Oxford-Edinburgh-New York (1980) Google Scholar
  24. 24.
    Oono, Y., Paniconi, M.: Steady state thermodynamics. In: Dynamic Organization of Fluctuations (Nishinomiya, 1997). Prog. Theor. Phys. Suppl. 130, 29–44 (1998). MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Pippard, A.B.: Elements of Classical Thermodynamics for Advanced Students of Physics. Cambridge University Press, New York (1957) MATHGoogle Scholar
  26. 26.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems, and molecular machines. Preprint. arXiv:1205.4176v1 (2012)
  27. 27.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Lorenzo Bertini
    • 1
  • Davide Gabrielli
    • 2
  • Giovanni Jona-Lasinio
    • 3
  • Claudio Landim
    • 4
    • 5
  1. 1.Dipartimento di MatematicaUniversità di Roma ‘La Sapienza’RomeItaly
  2. 2.Dipartimento di MatematicaUniversità dell’AquilaCoppitoItaly
  3. 3.Dipartimento di Fisica and INFNUniversità di Roma La SapienzaRomeItaly
  4. 4.IMPARio de JaneiroBrazil
  5. 5.CNRS UMR 6085Université de RouenSaint-Étienne-du-RouvrayFrance

Personalised recommendations