Skip to main content
Log in

A Particle System with Explosions: Law of Large Numbers for the Density of Particles and the Blow-Up Time

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider a system of independent random walks in the discrete torus with creation-annihilation of particles and possible explosion of the total number of particles in finite time. Rescaling space and rates for diffusion/creation/annihilation of particles, we obtain a strong law of large numbers for the density of particles in the supremum norm. The limiting object is a classical solution to the semilinear heat equation t u= xx u+f(u). If f(u)=u p, 1<p≤3, we also obtain a law of large numbers for the explosion time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L., Theodosopulu, M.: Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. Appl. Probab. 12(2), 367–379 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97(1–2), 3–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blount, D.: Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion. Ann. Probab. 19(4), 1440–1462 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blount, D.: Law of large numbers in the supremum norm for a chemical reaction with diffusion. Ann. Appl. Probab. 2(1), 131–141 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.-Y.: Uniqueness of the ω-limit point of solutions of a semilinear heat equation on the circle. Proc. Jpn. Acad., Ser. A, Math. Sci. 62(9), 335–337 (1986)

    Article  MATH  Google Scholar 

  6. Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differ. Equ. 78(1), 160–190 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galaktionov, V.A., Vázquez, J.L.: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002). Current developments in partial differential equations, Temuco (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  9. Kotelenez, P.: Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann. Probab. 14(1), 173–193 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kotelenez, P.: High density limit theorems for nonlinear chemical reactions with diffusion. Probab. Theory Relat. Fields 78(1), 11–37 (1988)

    Google Scholar 

  11. Mourragui, M.: Hydrodynamic limit for a jump, birth and death process (Limite hydrodynamique d’un processus de sauts, de naissances et de morts). C. R. Acad. Sci., Paris, Sér. I 316(9), 921–924 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (July 1998)

    MATH  Google Scholar 

  13. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  14. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser Advanced Texts: Basel Textbooks). Birkhäuser, Basel (2007). Blow-up, global existence and steady states

    MATH  Google Scholar 

  15. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-Up in Quasilinear Parabolic Equations. de Gruyter Expositions in Mathematics, vol. 19. de Gruyter, Berlin (1995). Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors

    Book  MATH  Google Scholar 

  16. Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. Clarendon Press/Oxford University Press, Oxford (2007). Mathematical theory

    MATH  Google Scholar 

  17. Velázquez, J.J.L.: Local behaviour near blow-up points for semilinear parabolic equations. J. Differ. Equ. 106(2), 384–415 (1993)

    Article  MATH  Google Scholar 

  18. Weissler, F.B.: Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32(3), 277–296 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We want to thank Pablo Ferrari, Milton Jara and Mariela Sued for fruitful discussions.

PG is partially supported by UBACyT 20020090100208, ANPCyT PICT No. 2008-0315 and CONICET PIP 2010-0142 and 2009-0613. TF acknowledges support from ANPCyT Argentina through a post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Groisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, T., Groisman, P. A Particle System with Explosions: Law of Large Numbers for the Density of Particles and the Blow-Up Time. J Stat Phys 149, 629–642 (2012). https://doi.org/10.1007/s10955-012-0621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0621-8

Keywords

Navigation