Journal of Statistical Physics

, Volume 149, Issue 4, pp 629–642 | Cite as

A Particle System with Explosions: Law of Large Numbers for the Density of Particles and the Blow-Up Time

  • Tertuliano Franco
  • Pablo Groisman


Consider a system of independent random walks in the discrete torus with creation-annihilation of particles and possible explosion of the total number of particles in finite time. Rescaling space and rates for diffusion/creation/annihilation of particles, we obtain a strong law of large numbers for the density of particles in the supremum norm. The limiting object is a classical solution to the semilinear heat equation t u= xx u+f(u). If f(u)=u p , 1<p≤3, we also obtain a law of large numbers for the explosion time.


Hydrodynamic limit Parabolic equations Blow-up 



We want to thank Pablo Ferrari, Milton Jara and Mariela Sued for fruitful discussions.

PG is partially supported by UBACyT 20020090100208, ANPCyT PICT No. 2008-0315 and CONICET PIP 2010-0142 and 2009-0613. TF acknowledges support from ANPCyT Argentina through a post-doctoral fellowship.


  1. 1.
    Arnold, L., Theodosopulu, M.: Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. Appl. Probab. 12(2), 367–379 (1980) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97(1–2), 3–22 (1998) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Blount, D.: Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion. Ann. Probab. 19(4), 1440–1462 (1991) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Blount, D.: Law of large numbers in the supremum norm for a chemical reaction with diffusion. Ann. Appl. Probab. 2(1), 131–141 (1992) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen, X.-Y.: Uniqueness of the ω-limit point of solutions of a semilinear heat equation on the circle. Proc. Jpn. Acad., Ser. A, Math. Sci. 62(9), 335–337 (1986) MATHCrossRefGoogle Scholar
  6. 6.
    Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differ. Equ. 78(1), 160–190 (1989) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Galaktionov, V.A., Vázquez, J.L.: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002). Current developments in partial differential equations, Temuco (1999) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999) MATHGoogle Scholar
  9. 9.
    Kotelenez, P.: Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann. Probab. 14(1), 173–193 (1986) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kotelenez, P.: High density limit theorems for nonlinear chemical reactions with diffusion. Probab. Theory Relat. Fields 78(1), 11–37 (1988) Google Scholar
  11. 11.
    Mourragui, M.: Hydrodynamic limit for a jump, birth and death process (Limite hydrodynamique d’un processus de sauts, de naissances et de morts). C. R. Acad. Sci., Paris, Sér. I 316(9), 921–924 (1993) MathSciNetMATHGoogle Scholar
  12. 12.
    Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (July 1998) MATHGoogle Scholar
  13. 13.
    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992) MATHGoogle Scholar
  14. 14.
    Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser Advanced Texts: Basel Textbooks). Birkhäuser, Basel (2007). Blow-up, global existence and steady states MATHGoogle Scholar
  15. 15.
    Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-Up in Quasilinear Parabolic Equations. de Gruyter Expositions in Mathematics, vol. 19. de Gruyter, Berlin (1995). Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors MATHCrossRefGoogle Scholar
  16. 16.
    Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. Clarendon Press/Oxford University Press, Oxford (2007). Mathematical theory MATHGoogle Scholar
  17. 17.
    Velázquez, J.J.L.: Local behaviour near blow-up points for semilinear parabolic equations. J. Differ. Equ. 106(2), 384–415 (1993) MATHCrossRefGoogle Scholar
  18. 18.
    Weissler, F.B.: Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32(3), 277–296 (1979) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Universidade Federal da BahiaSalvadorBrazil
  2. 2.Departamento de Matemática, Fac. Cs. Exactas y NaturalesUBA and IMAS-CONICETBuenos AiresArgentina

Personalised recommendations