Journal of Statistical Physics

, Volume 148, Issue 2, pp 280–295 | Cite as

Renormalization Group Analysis of Nonlinear Diffusion Equations with Time Dependent Coefficients and Marginal Perturbations

  • Gastão A. Braga
  • Jussara M. Moreira


In this paper we use a Renormalization Group (RG) method to study the long-time asymptotics of nonlinear diffusion equations with time-dependent diffusion coefficients and nonlinearities which are marginal (or critical) with respect to the RG operator. These equations describe the time evolution of the average concentration of a passive scalar being advected by a random velocity field. We prove that, besides the expected diffusive behavior, there is an extra logarithmic correction which is the imprint of the critical nonlinearity.


Renormalization group Partial differential equations Multiple scale Asymptotic behavior 



The authors wish to thank the precious discussions with Paulo Cesar Carrião on topics related to this paper.


  1. 1.
    Angenent, S.B., Aronson, D.G., Betelu, S.I., Lowengrub, J.S.: Focusing of an elongated hole in porous medium flow. Physica, D 151, 228–252 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Avellaneda, M.: Homogenization and renormalization: the mathematics of multi-scale random media and turbulent diffusion. In: Dynamical Systems and Probabilistic Methods in Partial Differential Equations. Lectures in Applied Mathematics, vol. 31, pp. 251–268 (1994) Google Scholar
  3. 3.
    Barenblatt, G.I.: Scaling, Self-Similarity and Intermediate Asymptotics, 2nd edn. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
  4. 4.
    Betelu, S.I., Aronson, D.G., Angenent, S.B.: Renormalization study of two-dimensional convergent solutions of the porous medium equation. Physica, D 138, 344–359 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bona, J., Promislow, K., Wayne, G.: On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. Comput. Simul. 37, 265–277 (1994) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bona, J.L., Promislow, K.S., Wayne, C.E.: Higher order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8, 1179–1206 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Braga, G.A., Furtado, F., Isaia, V.: Renormalization group calculation of asymptotically self-similar dynamics. Discrete Contin. Dyn. Syst. Suppl. 2005(Special), 131–141 (2005) MathSciNetGoogle Scholar
  8. 8.
    Braga, G.A., Furtado, F., Moreira, J.M., Rolla, L.T.: Renormalization group analysis of nonlinear diffusion equations with time dependent diffusion coefficients: numerical results (in preparation) Google Scholar
  9. 9.
    Braga, G.A., Furtado, F., Moreira, J.M., Rolla, L.T.: Renormalization group analysis of nonlinear diffusion equations with periodic coefficients. Multiscale Model. Simul. 1(4), 630–644 (2003) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Braga, G.A., Furtado, F., Moreira, J.M., Rolla, L.T.: Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: analytical results. Discrete Contin. Dyn. Syst., Ser. B 7, 699–715 (2007) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bricmont, J., Kupiainen, A.: Renormalizing partial differential equations. Construct. Phys. 446, 83–115 (1995) MathSciNetADSGoogle Scholar
  12. 12.
    Bricmont, J., Kupiainen, A., Lin, G.: Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun. Pure Appl. Math. 47, 893–922 (1994) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Caginalp, G.: Renormalization and scaling methods for nonlinear parabolic systems. Nonlinearity 10, 1217–1229 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Chen, L., Goldenfeld, N.: Numerical renormalization group calculations for similarity solutions and travelling waves. Phys. Rev. E 51, 5577–5581 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    Chen, L., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54, 376–394 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    Fujita, H.: On the blowing up of solutions to the Cauchy problem for u t=Δu+u 1+α. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 13, 109–124 (1966) MATHGoogle Scholar
  17. 17.
    Gell-Mann, M., Low, F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Glimm, J., Lindquist, B., Pereira, F., Zhang, Q.: A theory of macrodispersion for the scale up problem. Transp. Porous Media 13, 97–122 (1993) CrossRefGoogle Scholar
  19. 19.
    Goldenfeld, N.: Lectures on Phase Transition and the Renormalization Group. Addison-Wesley, Reading (1992) Google Scholar
  20. 20.
    Hara, T.: A rigorous control of logarithmic corrections in four-dimensional ϕ 4 spin systems I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1986) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Hara, T., Tasaki, H.: A rigorous control of logarithmic corrections in four-dimensional ϕ 4 spin systems II. Critical behavior of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1986) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Herraiz, L.: Asymptotic behaviour of solutions of some semilinear parabolic problems. Ann. Inst. Henri Poincaré 16, 49–105 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Levine, H.A.: The role of critical exponents in blow-up theorems. SIAM Rev. 32, 262–288 (1990) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Merdan, H., Caginalp, G.: Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete Contin. Dyn. Syst., Ser. B 3, 565–588 (2003) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Moise, I., Ziane, M.: Renormalization group method. Applications to partial differential equations. J. Dyn. Differ. Equ. 13, 275–321 (2001) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Mudavanhu, B., O’Malley, R.E. Jr.: A renormalization group method for nonlinear oscillators. Stud. Appl. Math. 107, 63–79 (2001) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Qi, Y.: Anomalous exponents and RG for nonlinear diffusion equations. Discrete Contin. Dyn. Syst. Suppl. 2005(Special), 738–745 (2005) Google Scholar
  29. 29.
    Qi, Y., Liu, X.: Universal self-similarity of porous media equations with absorption: the critical exponent case. J. Differ. Equ. 198, 442–463 (2004) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Salem, W.K.A.: On the renormalization group approach to perturbation theory for PDEs. Ann. Henri Poincaré 11, 1007–1021 (2010) ADSMATHCrossRefGoogle Scholar
  31. 31.
    Ville, R.D., Harkin, A., Holzer, M., Josic, K., Kaper, T.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D 237, 1029–1052 (2008) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Wilson, K.: Renormalization group and critical phenomena I, II. Phys. Rev. B 4, 3174–3183, 3184–3205 (1971). ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations