Advertisement

Journal of Statistical Physics

, Volume 148, Issue 2, pp 191–203 | Cite as

Asymptotic Fitness Distribution in the Bak–Sneppen Model of Biological Evolution with Four Species

  • Eckhard Schlemm
Article

Abstract

We suggest a new method to compute the asymptotic fitness distribution in the Bak–Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.

Keywords

Bak–Sneppen model Biological evolution Linear recurrence equation Markov chain Stationary distribution 

Notes

Acknowledgements

I thank two anonymous referees for carefully reading the manuscript and making helpful suggestions to improve its presentation. I also thank them for pointing out the applicability of our method to the anisotropic Bak–Sneppen model.

References

  1. 1.
    Aldous, D., Lovász, L., Winkler, P.: Mixing times for uniformly ergodic Markov chains. Stoch. Process. Appl. 71(2), 165–185 (1997) MATHCrossRefGoogle Scholar
  2. 2.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71(24), 4083–4086 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    Flyvbjerg, H., Sneppen, K., Bak, P.: Mean field theory for a simple model of evolution. Phys. Rev. Lett. 71(24), 4087–4090 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    Gillet, A.J.: Ph.D. thesis. Vrije Universiteit, Amsterdam (2007) Google Scholar
  5. 5.
    Gillett, A., Meester, R., Nuyens, M.: Bounds for avalanche critical values of the Bak–Sneppen model. Markov Process. Relat. Fields 12(4), 679–694 (2006) MathSciNetMATHGoogle Scholar
  6. 6.
    Gillett, A., Meester, R., Van Der Wal, P.: Maximal avalanches in the Bak–Sneppen model. J. Appl. Probab. 43(3), 840–851 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Grinfeld, M., Knight, P.A., Wade, A.R.: Bak–Sneppen-type models and rank-driven processes. Phys. Rev. E 84(4), 041124 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Grinfeld, M., Knight, P.A., Wade, A.R.: Rank-driven Markov processes. J. Stat. Phys. 146(2), 378–407 (2011) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Head, D.A., Rodgers, G.J.: The anisotropic Bak–Sneppen model. J. Phys. A 31(17), 3977–3988 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Jensen, H.J.: Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, vol. 10. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  11. 11.
    Maslov, S., De Los Rios, P., Marsili, M., Zhang, Y.: Critical exponents of the anisotropic Bak–Sneppen model. Phys. Rev. E 58(6), 7141 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Meester, R., Znamenski, D.: Limit behavior of the Bak–Sneppen evolution model. Ann. Probab. 31(4), 1986–2002 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Meester, R., Znamenski, D.: Critical thresholds and the limit distribution in the Bak–Sneppen model. Commun. Math. Phys. 246(1), 63–86 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009) MATHGoogle Scholar
  15. 15.
    Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14(2–3), 243–264 (1992) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Wolfson CollegeUniversity of CambridgeCambridgeUK

Personalised recommendations