Advertisement

Journal of Statistical Physics

, Volume 147, Issue 6, pp 1068–1076 | Cite as

Stationary State Solutions of a Bond Diluted Kinetic Ising Model: An Effective-Field Theory Analysis

  • E. Vatansever
  • B. O. Aktas
  • Y. Yüksel
  • U. Akinci
  • H. Polat
Article

Abstract

We examined the stationary state solutions of a bond diluted kinetic Ising model under a time dependent oscillating magnetic field within the effective-field theory (EFT) for a honeycomb lattice (q=3). The effects of the Hamiltonian parameters on the dynamic phase diagrams have been discussed in detail. Bond dilution process on the kinetic Ising model causes a number of interesting and unusual phenomena such as reentrant phenomena and has a tendency to destruct the first-order transitions and the dynamic tricritical point. Moreover, we have investigated the variation of the bond percolation threshold as functions of the amplitude and frequency of the oscillating field.

Keywords

Bond diluted kinetic Ising model Dynamic phase transition Effective-field theory 

Notes

Acknowledgements

The numerical calculations reported in this paper were performed at TÜBİTAK ULAKBİM (Turkish agency), High Performance and Grid Computing Center (TRUBA Resources) and this study has been completed at Dokuz Eylul University, Graduate School of Natural and Applied Sciences. One of the authors (B.O.A.) would like to thank the Turkish Educational Foundation (TEV) for partial financial support.

References

  1. 1.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253 (1925) ADSCrossRefGoogle Scholar
  2. 2.
    Tomè, T., de Oliveira, M.J.: Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41, 4251 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Acharyya, M.: Comparison of mean-field and Monte Carlo approaches to dynamic hysteresis in Ising ferromagnets. Physica A 253, 199 (1998) CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, B.K., Acharyya, M.: Dynamic transitions and hysteresis. Rev. Mod. Phys. 71, 847 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    Punya, A., Yimnirun, R., Laoratanakul, P., Laosiritaworn, Y.: Frequency dependence of the Ising-hysteresis phase-diagram: mean field analysis. Physica B 405, 3488 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Shi, X., Wei, G., Li, L.: Effective-field theory on the kinetic Ising model. Phys. Lett. A 372, 5922 (2008) ADSMATHCrossRefGoogle Scholar
  8. 8.
    Xiao-Ling, S., Guo-Zhu, W.: Effective-field theory for kinetic Ising model on honeycomb lattice. Commun. Theor. Phys. 51, 927 (2009) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Deviren, B., Canko, O., Keskin, M.: Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory. Chin. Phys. B 19, 050518 (2010) CrossRefGoogle Scholar
  10. 10.
    Rao, M., Krishnamurthy, H.R., Pandit, R.: Magnetic hysteresis in two model spin systems. Phys. Rev. B 42, 856 (1990) ADSCrossRefGoogle Scholar
  11. 11.
    Lo, W.S., Pelcovits, R.A.: Ising model in a time-dependent magnetic field. Phys. Rev. A 42, 7471 (1990) ADSCrossRefGoogle Scholar
  12. 12.
    Acharrya, M., Chakrabarti, B.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52, 6550 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    Sides, S.W., Rikvold, P.A., Novotny, M.A.: Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E 59, 2710 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    Zhu, H., Dong, S., Liu, J.-M.: Hysteresis loop area of the Ising model. Phys. Rev. B 70, 132403 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    Acharrya, M.: Monte Carlo study of dynamic phase transition in Ising metamagnet driven by oscillating magnetic field. J. Magn. Magn. Mater. 323, 2872 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    He, Y.-L., Wang, G.-C.: Observation of dynamic scaling of magnetic hysteresis in ultrathin ferromagnetic Fe/Au(001) films. Phys. Rev. Lett. 70, 2336 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    Jiang, Q., Yang, H.-N., Wang, G.-C.: Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface. Phys. Rev. B 52, 14911 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    Choi, B.C., Lee, W.Y., Samad, A., Bland, J.A.C.: Dynamics of magnetization reversal in thin polycrystalline Ni80Fe20 films. Phys. Rev. B 60, 11906 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    Jang, H., Grimson, M.J.: Hysteresis and the dynamic phase transition in thin ferromagnetic films. Phys. Rev. E 63, 066119 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A.: Evidence for a dynamic phase transition in [Co/Pt]3 magnetic multilayers. Phys. Rev. A 78, 134422 (2008) CrossRefGoogle Scholar
  21. 21.
    Yadari, M.E., Benayad, M.R., Benyoussef, A., Kenz, A.E.: Effects of random-crystal-field on the kinetic Blume Capel model. Physica A 389, 4677 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Gulpinar, G., Vatansever, E.: Effects of the quenched random crystal field on the dynamic spin-1 Blume-Capel model. J. Stat. Phys. 146, 787 (2012) MATHCrossRefGoogle Scholar
  23. 23.
    Gulpinar, G., Vatansever, E., Agartioglu, M.: Effective-field theory with the differential operator technique for a kinetic Blume–Capel model with random diluted single-ion anisotropy. Physica A 391, 3574 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of the Ising model. J. Phys. C 12, 3979 (1979) ADSCrossRefGoogle Scholar
  25. 25.
    Kaneyoshi, T.: Acta Phys. Pol. A 83, 703 (1993) Google Scholar
  26. 26.
    Tamura, I., Kaneyoshi, T.: Ising ferromagnets with random anisotropy. Prog. Theor. Phys. 66, 1892 (1981) ADSCrossRefGoogle Scholar
  27. 27.
    Kaneyoshi, T.: A new type of cluster theory in Ising models (I). Physica A 269, 344 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • E. Vatansever
    • 1
  • B. O. Aktas
    • 1
  • Y. Yüksel
    • 1
  • U. Akinci
    • 1
  • H. Polat
    • 1
  1. 1.Department of PhysicsDokuz Eylül UniversityIzmirTurkey

Personalised recommendations