Journal of Statistical Physics

, Volume 147, Issue 5, pp 942–962 | Cite as

Spectral Dimension of Trees with a Unique Infinite Spine

  • Sigurdur Ö. Stefánsson
  • Stefan Zohren


Using generating functions techniques we develop a relation between the Hausdorff and spectral dimension of trees with a unique infinite spine. Furthermore, it is shown that if the outgrowths along the spine are independent and identically distributed, then both the Hausdorff and spectral dimension can easily be determined from the probability generating function of the random variable describing the size of the outgrowths at a given vertex, provided that the probability of the height of the outgrowths exceeding n falls off as the inverse of n. We apply this new method to both critical non-generic trees and the attachment and grafting model, which is a special case of the vertex splitting model, resulting in a simplified proof for the values of the Hausdorff and spectral dimension for the former and novel results for the latter.


Random trees Randomly grown trees Spectral dimension Random walk Hausdorff dimension Simply generated trees Non-generic trees Galton-Watson process Vertex splitting model 



The authors would like to thank Bergfinnur Durhuus, Georgios Giasemidis, Thordur Jonsson and John Wheater for discussions as well as the anonymous referee for useful comments which improved the manuscript. S.Ö.S. acknowledges hospitality at the University of Iceland. S.Z. acknowledges financial support of STFC grant ST/G000492/1. Furthermore, he would like to thank NORDITA for kind hospitality and financial support for a visit during which this work was initiated.


  1. 1.
    Aldous, D.: Probability distributions on cladograms. In: Random Discrete Structures. IMA Vol. Math. Appl., vol. 76, pp. 1–18. Springer, Berlin (1996) CrossRefGoogle Scholar
  2. 2.
    Ford, D.J.: Probabilities on cladograms: introduction to the alpha model. Preprint, math.PR/0511246 (2005)
  3. 3.
    David, F., Hagendorf, C., Wiese, K.J.: A growth model for RNA secondary structures. J. Stat. Mech. P04008 (2008). 0711.3421
  4. 4.
    Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monogr. Math. Phys., vol. 1. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  5. 5.
    Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université de Bordeaux I (1998) Google Scholar
  6. 6.
    Gall, J.-F.L.: Random trees and applications. Probab. Surv. 2, 245–311 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Di Francesco, P.: 2D quantum gravity, matrix models and graph combinatorics. math-ph/0406013
  8. 8.
    Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Can. J. Math. 30(5), 997–1015 (1978) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Athreya, K., Ney, P.: Branching Processes. Springer, Berlin (1972) MATHGoogle Scholar
  10. 10.
    Stefánsson, S.Ö.: Markov branching in the vertex splitting model. J. Stat. Mech. P04018 (2012). 1103.3445
  11. 11.
    David, F., Dukes, M., Jonsson, T., Stefánsson, S.Ö.: Random tree growth by vertex splitting. J. Stat. Mech. P04009 (2009). 0811.3183
  12. 12.
    Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241, 191–213 (2003). math/0207153 MathSciNetADSMATHGoogle Scholar
  13. 13.
    Barlow, M.T., Coulhoun, T., Kumagai, T.: Characterization of sub-Gaussian heat kernel estimates on strongly recurrent. Commun. Pure Appl. Math. 58, 1642–1677 (2005) MATHCrossRefGoogle Scholar
  14. 14.
    Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Ill. J. Math. 50(1–4), 33–65 (2006) MathSciNetMATHGoogle Scholar
  15. 15.
    Croydon, D., Kumagai, T.: Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. 13, 1419–1441 (2008) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Fujii, I., Kumagai, T.: Heat kernel estimates on the incipient infinite cluster for critical branching processes. In: Proceedings of German-Japanese Symposium in Kyoto 2006, vol. B6, pp. 85–95 (2008) Google Scholar
  17. 17.
    Barlow, M.T., Masson, R.: Spectral dimension and random walks on the two dimensional uniform spanning tree. Commun. Math. Phys. 305, 23–57 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Ambjørn, J., Boulatov, D., Nielsen, J.L., Rolf, J., Watabiki, Y.: The spectral dimension of 2D quantum gravity. J. High Energy Phys. 02, 010 (1998). hep-th/9801099 ADSCrossRefGoogle Scholar
  19. 19.
    Jonsson, T., Wheater, J.F.: The spectral dimension of the branched polymer phase of two-dimensional quantum gravity. Nucl. Phys. B 515, 549–574 (1998). hep-lat/9710024 MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Ambjørn, J., Jurkiewicz, J., Loll, R.: Spectral dimension of the universe. Phys. Rev. Lett. 95, 171301 (2005). hep-th/0505113 ADSCrossRefGoogle Scholar
  21. 21.
    Durhuus, B., Jonsson, T., Wheater, J.F.: On the spectral dimension of causal triangulations. J. Stat. Phys. 139, 859–881 (2009). 0908.3643 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Coulhon, T.: Random walks and geometry on infinite graphs. In: Ambrosio, L., Cassano, F.S. (eds.) Lecture Notes on Analysis on Metric Spaces (2000) Google Scholar
  23. 23.
    Durhuus, B., Jonsson, T., Wheater, J.F.: The spectral dimension of generic trees. J. Stat. Phys. 128(5), 1237–1260 (2007). math-ph/0607020 MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1966) MATHGoogle Scholar
  25. 25.
    Feller, W.: A limit theorem for random variables with infinite moments. Am. J. Math. 68(2), 257–262 (1946) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Seneta, E.: Regularly Varying Functions. Springer, Berlin (1976) MATHCrossRefGoogle Scholar
  27. 27.
    Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963) MATHGoogle Scholar
  28. 28.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) MATHCrossRefGoogle Scholar
  29. 29.
    Jonsson, T., Stefánsson, S.Ö.: Condensation in nongeneric trees. J. Stat. Phys. 142, 277 (2011). 1009.1826 MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Kennedy, D.P.: The Galton-Watson process conditioned on the total progeny. J. Appl. Probab. 12, 800–806 (1975) MATHCrossRefGoogle Scholar
  31. 31.
    Aldous, D., Pitman, J.: Tree-valued Markov chains derived from Galton-Watson processes. Ann. Inst. Henri Poincaré Probab. Stat. 34, 637–686 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Janson, S.: 2011, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Preprint 1112.0510
  33. 33.
    Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22, 425–487 (1986) MathSciNetMATHGoogle Scholar
  34. 34.
    Correia, J.D., Wheater, J.F.: The spectral dimension of non-generic branched polymer ensembles. Phys. Lett. B 422, 76–81 (1998). hep-th/9712058 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Burda, Z., Correia, J.D., Krzywicki, A.: Statistical ensemble of scale-free random graphs. Phys. Rev. E 64, 046118 (2001). cond-mat/0104155 ADSCrossRefGoogle Scholar
  36. 36.
    Slack, R.: A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheor. Verw. Geb. 9, 139–145 (1968) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New York (1974) Google Scholar
  38. 38.
    Chen, B., Ford, D., Winkel, M.: A new family of Markov branching trees: the alpha-gamma model. Electron. J. Probab. 14, 400–430 (2009) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Giasemidis, G., Wheater, J.F., Zohren, S.: Dynamical dimensional reduction in toy models of 4D causal quantum gravity. Preprint 1202.2710 (2012)
  40. 40.
    Giasemidis, G., Wheater, J.F., Zohren, S.: Multigraph models for causal quantum gravity and scale dependent spectral dimension. Preprint 1202.6322 (2012)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NORDITAStockholmSweden
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations