Journal of Statistical Physics

, Volume 147, Issue 3, pp 565–581 | Cite as

Perturbations of the Motion of a Charged Particle in a Noisy Magnetic Field



We consider deterministic and stochastic perturbations of the motion of a charged particle in a noisy magnetic field. The noise in the magnetic field leads to the mixing on the energy surfaces and allows to apply averaging principle. We describe long-time energy evolution and its metastable states for a given initial energy and a time scale.


Mixing caused by a noisy magnetic field Averaging Metastability Stochastic resonance 


  1. 1.
    Bochniak, M.: Linear elliptic boundary value problems in varying domains. Math. Nachr. 250, 17–24 (2003) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Freidlin, M.: Sublimiting distributions and stabilization of solutions of parabolic equations with a small parameter. Sov. Math. Dokl. 18(4), 114–118 (1977) Google Scholar
  3. 3.
    Freidlin, M.I.: Functional Integration and Partial Differential Equation. Princeton University Press, Princeton (1985) Google Scholar
  4. 4.
    Freidlin, M.: Quasi-deterministic approximation, metastability, and stochastic resonance. Physica D 137, 333–352 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Freidlin, M., Koralov, L.: Nonlinear stochastic perturbations of dynamical systems and quasi-linear PDE’s with a small parameter. Probab. Theory Relat. Fields 147, 273–291 (2009) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freidlin, M.I., Weber, M.: On random perturbations of Hamiltonian systems with many degrees of freedom. Stoch. Process. Appl. 94, 199–239 (2001) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Freidlin, M.I., Weber, M.: On random perturbations of dynamical systems and diffusion processes with conservation laws. Probab. Theory Relat. Fields 128, 441–466 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998) MATHCrossRefGoogle Scholar
  9. 9.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1985) MATHGoogle Scholar
  10. 10.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin, Heidelberg, New York (1980) MATHGoogle Scholar
  11. 11.
    Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Am. Math. Soc., Providence (2008) MATHGoogle Scholar
  12. 12.
    Veretennikov, A.: On large deviations in the averaging principle for SDEs with full dependence. Ann. Probab. 37, 284–296 (1999). Correction: arXiv:math.PR/0502098 (2005) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Department of Information Technology and MathematicsHTW DresdenDresdenGermany

Personalised recommendations