Journal of Statistical Physics

, 144:1171 | Cite as

Conservative Interacting Particles System with Anomalous Rate of Ergodicity

  • Z. Brzeźniak
  • F. Flandoli
  • M. Neklyudov
  • B. Zegarliński


We analyse certain conservative interacting particle system and establish ergodicity of the system for a family of invariant measures. Furthermore, we show that convergence rate to equilibrium is exponential. This result is of interest because it presents counterexample to the standard assumption of physicists that conservative system implies polynomial rate of convergence. The system in question is stochastic rather than deterministic.


Hörmander type generators Conservative interacting particle system Ergodicity 


  1. 1.
    Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer Series in Statistics: Probability and Its Applications, vol. 7, Springer, Berlin (1991) MATHCrossRefGoogle Scholar
  2. 2.
    Barbato, D., Flandoli, F., Morandin, F.: Anomalous dissipation in a stochastic inviscid dyadic model. Ann. Appl. Probab. (to appear) Google Scholar
  3. 3.
    Barbato, D., Flandoli, F., Morandin, F.: Uniqueness for a stochastic inviscid dyadic model. Proc. Am. Math. Soc. 138, 2607–2617 (2010) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bernardin, C.: Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise. Stoch. Process. Appl. 117, 487–513 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bernardin, C.: Superdiffusivity of asymmetric energy model in dimensions 1 and 2. J. Math. Phys. 49, 103301 (2008) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Bertini, L., Zegarliński, B.: Coercive inequalities for Gibbs measures. J. Funct. Anal. 162, 257–286 (1999) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bertini, L., Zegarliński, B.: Coercive inequalities for Kawasaki dynamics: the product case. Markov Process. Relat. Fields 5, 125–162 (1999) MATHGoogle Scholar
  8. 8.
    Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62 (1998) MATHGoogle Scholar
  9. 9.
    Dobrushin, R.L.: Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity. Probl. Inf. Transm. 7, 149–164 (1971) Google Scholar
  10. 10.
    Flandoli, F., Ga̧tarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fritz, J., Nagy, K., Olla, S.: Equilibrium fluctuations for a system of harmonic oscillators with conservative noise. J. Stat. Phys. 122, 399–415 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Giardinà, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 103301 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Holevo, A.S.: On dissipative stochastic equations in a Hilbert space. Probab. Theory Relat. Fields 104, 483–500 (1996) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Inglis, J., Neklyudov, M., Zegarlinski, B.: Ergodicity for infinite particle systems with locally conserved quantities. Infin. Dimens. Anal. Quantum Probab. (2011, to appear) Google Scholar
  16. 16.
    Janvresse, E., Landim, C., Quastel, J., Yau, H.T.: Relaxation to equilibrium of conservative dynamics. I. Zero-range processes. Ann. Probab. 27, 325–360 (1999) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kato, T.: On the semi-groups generated by Kolmogoroff’s differential equations. J. Math. Soc. Jpn. 6, 1–15 (1954) MATHCrossRefGoogle Scholar
  18. 18.
    Krylov, N., Rozovskii, B.: Stochastic Evolution Equations. Itogi Nauki i Tekhniki, Seria Sovremiennyie Problemy Matematiki, vol. 14 (1979) (in Russian) Google Scholar
  19. 19.
    Landim, C., Yau, H.T.: Convergence to equilibrium of conservative particle systems on ℤd. Ann. Probab. 31, 115–147 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Liggett, T.: Interacting Particle Systems. Springer, Berlin (2004) Google Scholar
  21. 21.
    Pardoux, E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127–167 (1979) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Spitzer, F.: Random processes defined through the interaction of an infinite particle system. In: Lecture Notes in Math., vol. 89, pp. 201–223. Springer, Berlin (1969) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. Brzeźniak
    • 2
  • F. Flandoli
    • 1
  • M. Neklyudov
    • 2
    • 4
  • B. Zegarliński
    • 3
  1. 1.Dipartimento di Matematica ApplicataUniversitàdi PisaPisaItaly
  2. 2.Department of MathematicsUniversity of YorkYorkUK
  3. 3.CNRSToulouseFrance
  4. 4.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations