Advertisement

Lifshitz Tails on the Bethe Lattice: A Combinatorial Approach

  • Victor Bapst
  • Guilhem Semerjian
Article

Abstract

The density of states of disordered hopping models generically exhibits an essential singularity around the edges of its support, known as a Lifshitz tail. We study this phenomenon on the Bethe lattice, i.e. for the large-size limit of random regular graphs, converging locally to the infinite regular tree, for both diagonal and off-diagonal disorder. The exponential growth of the volume and surface of balls on these lattices is an obstacle for the techniques used to characterize the Lifshitz tails in the finite-dimensional case. We circumvent this difficulty by computing bounds on the moments of the density of states, and by deriving their implications on the behavior of the integrated density of states.

Keywords

Density of states Anderson model Lifshitz tails Trees 

References

  1. 1.
    Anderson, P.W.: Phys. Rev. 109, 1492 (1958) ADSCrossRefGoogle Scholar
  2. 2.
    Abrahams, E. (ed.): 50 Years of Anderson Localization. World Scientific, Singapore (2010) MATHGoogle Scholar
  3. 3.
    Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Basel (1990) MATHCrossRefGoogle Scholar
  4. 4.
    Pastur, L.A., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992) MATHCrossRefGoogle Scholar
  5. 5.
    Stollmann, P.: Caught by Disorder. Birkhäuser, Basel (2001) MATHCrossRefGoogle Scholar
  6. 6.
    Veselić, I.: Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators. Springer, Berlin (2007) Google Scholar
  7. 7.
    Wegner, F.: Z. Phys. B 44, 9 (1981) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Simon, B.: Phys. Rev. B 27, 3859 (1983) ADSCrossRefGoogle Scholar
  9. 9.
    Lifshitz, I.M.: Adv. Phys. 13, 483 (1964) ADSCrossRefGoogle Scholar
  10. 10.
    Simon, B.: J. Stat. Phys. 38, 65 (1985) ADSCrossRefGoogle Scholar
  11. 11.
    Fröhlich, J., Spencer, T.: Commun. Math. Phys. 88, 151 (1983) ADSMATHCrossRefGoogle Scholar
  12. 12.
    Abou-Chacra, R., Thouless, D.J., Anderson, P.W.: J. Phys. C, Solid State Phys. 6, 1734 (1973) ADSCrossRefGoogle Scholar
  13. 13.
    Abou-Chacra, R., Thouless, D.J.: J. Phys. C, Solid State Phys. 7, 65 (1974) ADSCrossRefGoogle Scholar
  14. 14.
    Kim, Y., Harris, A.B.: Phys. Rev. B 31, 7393 (1985) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Mirlin, A.D., Fyodorov, Y.V.: Nucl. Phys. B 366, 507 (1991) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Miller, J., Derrida, B.: J. Stat. Phys. 75, 357 (1994) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Bronold, F.X., Alvermann, A., Fehske, H.: Philos. Mag. 84, 673 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Monthus, C., Garel, T.: J. Phys. A, Math. Theor. 42, 075002 (2009) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Biroli, G., Semerjian, G., Tarzia, M.: Prog. Theor. Phys. Suppl. 184, 187 (2010) ADSMATHCrossRefGoogle Scholar
  20. 20.
    Kunz, H., Souillard, B.: J. Phys. Lett. 44, 411 (1983) CrossRefGoogle Scholar
  21. 21.
    Acosta, V., Klein, A.: J. Stat. Phys. 69, 277 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Aizenman, M., Molchanov, S.: Commun. Math. Phys. 157, 245 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Klein, A.: Adv. Math. 133, 163 (1998) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Aizenman, M., Sims, R., Warzel, S.: Probab. Theory Relat. Fields 136, 363 (2006) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Froese, R., Hasler, D., Spitzer, W.: Commun. Math. Phys. 269, 239 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Aizenman, M., Warzel, S.: Phys. Rev. Lett. 106, 136804 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    Aizenman, M., Warzel, S.: (2011). arXiv:1104.0969
  28. 28.
    Rodgers, G.J., Bray, A.J.: Phys. Rev. B 37, 3557 (1988) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Biroli, G., Monasson, R.: J. Phys. A, Math. Gen. 32, L255 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    Bauer, M., Golinelli, O.: J. Stat. Phys. 103, 301 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Semerjian, G., Cugliandolo, L.F.: J. Phys. A, Math. Gen. 35, 4837 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Khorunzhy, O., Shcherbina, M., Vengerovsky, V.: J. Math. Phys. 45, 1648 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Rogers, T., Castillo, I.P., Kühn, R., Takeda, K.: Phys. Rev. E 78, 031116 (2008) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Metz, F.L., Neri, I., Bollé, D.: Phys. Rev. E 82, 031135 (2010) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Müller, P., Stollmann, P., (2010). arXiv:1002.5000
  36. 36.
    Reinhold, T.: Über die integrierte Zustandsdichte des Laplace-Operators auf Bond-Perkolationsgraphen des Bethe-Gitters. Diploma thesis (2009) (in German) Google Scholar
  37. 37.
    Khorunzhy, O., Kirsch, W., Müller, P., Vengerovsky, V.: Ann. Appl. Probab. 16, 295 (2006) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Kesten, H.: Trans. Am. Math. Soc. 92, 336 (1959) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    McKay, B.D.: Linear Algebra Appl. 40, 203 (1981) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Mézard, M., Parisi, G.: Eur. Phys. J. B 20, 217 (2001) ADSCrossRefGoogle Scholar
  41. 41.
    Bordenave, C., Lelarge, M.: Random Struct. Algorithms 37, 332 (2010) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Kirsch, W.: An invitation to random Schrödinger operators. In: Panoramas et Syntheses, vol. 25, pp. 1–119 (2008) Google Scholar
  43. 43.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I, Functional Analysis. Academic Press, San Diego (1981) Google Scholar
  44. 44.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971) Google Scholar
  45. 45.
    Kunz, H., Souillard, B.: Commun. Math. Phys. 78, 201 (1980) MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Carmona, R., Klein, A., Martinelli, F.: Commun. Math. Phys. 108, 41 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  47. 47.
    Klopp, F.: J. Math. Phys. 44, 4975 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    Eggarter, T.P., Riedinger, R.: Phys. Rev. B 18, 569 (1978) ADSCrossRefGoogle Scholar
  49. 49.
    Combes, J.-M., Germinet, F., Klein, A.: (2010). arXiv:1008.4817
  50. 50.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 2nd edn. Wiley, New York (1971) Google Scholar
  51. 51.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) MATHCrossRefGoogle Scholar
  52. 52.
    Krattenthaler, C.: Adv. Appl. Math. 27, 510 (2001) MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Tracy, C.A., Widom, H.: Commun. Math. Phys. 177, 727 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  54. 54.
    Sodin, S.: J. Stat. Phys. 136, 834 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  55. 55.
    Sodin, S.: (2009). arXiv:0903.4295v5
  56. 56.
    Bordenave, C., Lelarge, M., Salez, J.: Ann. Probab. 39, 1097 (2010) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LPTENS, Unité Mixte de Recherche (UMR 8549) du CNRS et de l’ENS, associée à l’UPMCUniv. Paris 06Paris Cedex 05France

Personalised recommendations