Advertisement

Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

  • M. M. Rading
  • T. A. Engel
  • R. Lipowsky
  • A. Valleriani
Open Access
Article

Abstract

Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

Keywords

Cell size distribution Structured populations Multiple cell division Stochastic cell division Population balance equations 

References

  1. 1.
    Albert, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science Textbooks (2007) Google Scholar
  2. 2.
    Harris, E.H.: Chlamydomonas as a model organism. Annu. Rev. Cell Biol. Plant Mol. Biol. 52, 363–406 (2001) CrossRefGoogle Scholar
  3. 3.
    Spudich, J.L., Sager, R.: Regulation of the Chlamydomonas cell cycle by dark and light. J. Cell Biol. 85, 136–145 (1980) CrossRefGoogle Scholar
  4. 4.
    Donnan, L., John, P.C.L.: Cell cycle control by timer and sizer in Chlamydomonas. Nature 304, 630–633 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    Craigie, R.A., Cavaliere-Smith, T.: Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 54, 173–191 (1982) Google Scholar
  6. 6.
    Oldenhof, H., Zachleder, V., van den Ende, H.: Cell cycle of Chlamydomonas r. Folia Microbiol. 53, 52 (2007) Google Scholar
  7. 7.
    Oldenhof, H., Zachleder, V., van den Ende, H.: Blue and red light regulation in the cell cycle of Chlamydomonas reinhardtii. Eur. J. Phycol. 41, 313–320 (2006) CrossRefGoogle Scholar
  8. 8.
    Zachleder, V., van den Ende, H.: Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 102, 469–474 (1992) Google Scholar
  9. 9.
    Matsumura, K., Yagi, T., Yasuda, K.: Role of timer and sizer in regulation of Chlamydomonas cell cycle. Biochem. Biophys. Res. Commun. 306, 1042–1049 (2003) CrossRefGoogle Scholar
  10. 10.
    Wakamoto, Y., Inoue, I., Moriguchi, H., Yasuda, K.: Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresenius J. Anal. Chem. 371, 276–281 (2001) CrossRefGoogle Scholar
  11. 11.
    Rahn, O.: A chemical explanation of the variability of the growth rate. J. Gen. Physiol. 15, 257–277 (1932) CrossRefGoogle Scholar
  12. 12.
    Kendall, D.G.: On the choice of a mathematical model to represent normal bacterial growth. Biometrika 35, 316 (1948) MathSciNetMATHGoogle Scholar
  13. 13.
    Powell, E.O.: Growth rate and generation time of bacteria, with special reference to continuous cultures. J. Gen. Microbiol. 15, 492–511 (1956) Google Scholar
  14. 14.
    Fantes, P.A., Nurse, P.: Division timing: controls, models and mechanisms. Cell Cycle 1, 11–33 (1981) Google Scholar
  15. 15.
    Karp, G.: Cellular reproduction. In: Cell and Molecular Biology, pp. 570–612. Wiley, New York (2008) (Chap. 14) Google Scholar
  16. 16.
    Smith, J.A., Martin, L.: Do cells cycle? Proc. Natl. Acad. Sci. USA 70, 1263–1267 (1973) ADSCrossRefGoogle Scholar
  17. 17.
    Brenner, N., Shokef, Y.: Nonequilibrium statistical mechanics of dividing cell populations. Phys. Rev. Lett. 99, 138102 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Bell, G.I., Anderson, E.C.: Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329–351 (1967) CrossRefGoogle Scholar
  19. 19.
    Subramanian, G., Ramkrishna, D., Fredrickson, A.G., Tsuchiya, H.M.: On the mass distribution model for microbial cell populations. Bull. Math. Biophys. 32, 521–537 (1970) CrossRefGoogle Scholar
  20. 20.
    Ramkrishna, D., Borwanker, J.D.: A puristic analysis of population balance I. Chem. Eng. Sci. 28, 1423–1435 (1973) CrossRefGoogle Scholar
  21. 21.
    Ramkrishna, D.: Population Balances. Academic Press, San Diego (2005) Google Scholar
  22. 22.
    Diekmann, O., Heijmans, H.J.A.M., Thieme, H.R.: On the stability of the cell size distribution. J. Math. Biol. 19, 227–248 (1984) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Heijmans, H.J.A.M.: On the stable size distribution of populations reproducing by fission into two equally parts. Math. Biosci. 72, 19–50 (1984) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Tyson, J.J., Hannsgen, K.B.: The distribution of cell size and generation time in a model of the cell cycle incorporating size control and random transitions. J. Theor. Biol. 113, 29–62 (1985) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mantzaris, N.V., Liou, J., Daoutidis, P., Srienc, F.: Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration. J. Biotechnol. 71, 157–174 (1999) CrossRefGoogle Scholar
  26. 26.
    Shah, B.H., Borwanker, J.D., Ramkrishna, D.: Monte Carlo simulation of microbial population growth. Math. Biosci. 31, 1–23 (1976) MATHCrossRefGoogle Scholar
  27. 27.
    Liou, J., Srienc, F., Fredrickson, A.G.: Solutions of population balance models based on a successive generation approach. Chem. Eng. Sci. 92, 1529–1540 (1996) Google Scholar
  28. 28.
    Friedlander, T., Brenner, N.: Cellular properties and population asymptotics in the population balance equation. Phys. Rev. Lett. 101, 018104 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Debnath, L.: Nonlinear Partial Differential Equations. Birkhäuser, Basel (2007) Google Scholar
  30. 30.
    Beichelt, F., Montgomery, D.C.: Teubner-Taschenbuch der Stochastik. Teubner, Leipzig (2005), p. 42 Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • M. M. Rading
    • 1
  • T. A. Engel
    • 1
    • 2
  • R. Lipowsky
    • 1
  • A. Valleriani
    • 1
  1. 1.Department of Theory and Bio-SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Department of NeurobiologyYale University School of MedicineNew HavenUSA

Personalised recommendations