Journal of Statistical Physics

, 144:1256 | Cite as

On the Estimation of the Large Deviations Spectrum

  • J. Barral
  • P. Gonçalves


We propose an estimation algorithm for large deviations spectra of measures and functions. The algorithm converges for natural examples of multifractals.


Large deviations Multifractals 


  1. 1.
    Arbeiter, M., Patszchke, N.: Random self-similar multifractals. Math. Nachr. 181, 5–42 (1996) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Arnéodo, A., Bacry, E., Muzy, J.F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 4142–4164 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bacry, E., Muzy, J.F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449–475 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bacry, E., Arnéodo, A., Frisch, U., Gagne, Y., Hopfinger, E.: Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. In: Turbulence and Coherent Structures Grenoble, 1989, pp. 203–215. Fluid Mech. Appl., vol. 2. Kluwer Academic, Dordrecht (1991). Google Scholar
  5. 5.
    Bacry, E., Muzy, J.F., Arnéodo, A.: Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674 (1993) ADSMATHCrossRefGoogle Scholar
  6. 6.
    Bacry, E., Kozhemyak, A., Muzy, J.F.: Continuous cascade models for asset returns. J. Econ. Dyn. Control 32, 156–199 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bacry, E., Gloter, A., Hoffmann, M., Muzy, J.-F.: Multifractal analysis in a mixed asymptotic framework. Ann. Appl. Probab. 20(5), 1729–1760 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Barral, J., Jin, X.: Multifractal analysis of complex random cascades. Commun. Math. Phys. 219, 129–168 (2010) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Barral, J., Mandelbrot, B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409–430 (2002) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Barral, J., Mandelbrot, B.: Fractional multiplicative processes. Ann. Inst. Henri Poincaré Probab. Stat. 45, 1116–1129 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Barral, J., Seuret, S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11, 589–614 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Barral, J., Jin, X., Mandelbrot, B.B.: Convergence of signed multiplicative cascades. Ann. Appl. Probab. 20, 1219–1252 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math., vol. 470. Springer, Berlin (1975) MATHGoogle Scholar
  15. 15.
    Brown, G., Michon, G., Peyrière, J.: On the multifractal analysis of measures. J. Stat. Phys. 66(3–4), 775–790 (1992) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Buczolich, Z., Nagy, J.: Hölder spectrum of typical monotone continuous functions. Real Anal. Exch. 26, 133–156 (2000) MathSciNetGoogle Scholar
  17. 17.
    Chainais, P., Abry, P., Riedi, R.: On non scale invariant infinitely divisible cascades. IEEE Trans. Inf. Theory 51, 1063–1083 (2005) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Collet, P., Lebowitz, J.L., Porzio, A.: The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Duvernet, L.: Convergence of the structure function of a multifractal random walk in a mixed asymptotic setting. Stoch. Anal. Appl. 28, 763–792 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ellis, R.S.: Large deviations for a general class of random vectors. Ann. Probab. 12, 1–12 (1984) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Falconer, K.J.: The multifractal spectrum of statistically self-similar measures. J. Theor. Probab. 7, 681–702 (1994) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Falconer, K.J.: Fractal Geometry, 2nd edn. Mathematical Foundations and Applications. Wiley, New York (2003) MATHCrossRefGoogle Scholar
  23. 23.
    Frisch, U., Parisi, G.: Fully developed turbulence and intermittency in turbulence. In: Proc. Int’l Summer School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, pp. 84–88 (1985) Google Scholar
  24. 24.
    Gilbert, A.C., Willinger, W., Feldmann, A.: Scaling analysis of conservative cascades, with applications to network traffic. IEEE Trans. Inf. Theory 45, 971–991 (1999) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gupta, V.K., Waymire, E.C.: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorol. 32, 251–267 (1993) ADSCrossRefGoogle Scholar
  26. 26.
    Halsey, T.C., Jensen, M.H., Kadnoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterisation of strange sets. Phys. Rev. A 33, 1141 (1986) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Hentschel, H.G., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica 8D, 435–444 (1983) MathSciNetADSGoogle Scholar
  28. 28.
    Holley, R., Waymire, E.C.: Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2, 819–845 (1992) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. SIAM J. Math. Anal. 28, 944–970 (1997) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Jaffard, S.: Multifractal formalism for functions. II Self-similar functions. SIAM J. Math. Anal. 28, 971–998 (1997) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Jaffard, S.: Oscillations spaces: properties and applications to fractal and multifractal functions. J. Math. Phys. 39(8), 4129–4141 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Jaffard, S.: On the Frisch-Parisi conjecture. J. Math. Pures Appl. 79, 525–552 (2000) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Jaffard, S.: Wavelet techniques in multifractal analysis. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proc. of Symposia in Pure Mathematics, vol. 72(2), 91–152 (2004) Google Scholar
  34. 34.
    Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in multifractal analysis. In: Qian, T.M.I., Vai, X.Y. (eds.) Wavelet Analysis and Applications, pp. 219–264. Birkhäuser, Basel (2006) Google Scholar
  35. 35.
    Kahane, J.P., Peyrière, J.: Sur certaines martingales de B. Mandelbrot. Adv. Math. 22, 131–145 (1976) MATHCrossRefGoogle Scholar
  36. 36.
    Lévy Véhel, J.: Numerical computation of the large deviation multifractal spectrum. In: CFIC, Rome (1996) Google Scholar
  37. 37.
    Lévy Véhel, J., Tricot, C.: On various multifractal spectra. Prog. Probab. 57, 23–42 (2004) Google Scholar
  38. 38.
    Ludena, C.: L p-variations for multifractal fractional random walks. Ann. Appl. Probab. 18, 1138–1163 (2008) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Mandelbrot, B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In: Rosenblatt, M., Atta, C.V. (eds.) Statistical Models and Turbulence. Lectures Notes in Physics, vol. 12, pp. 333–351. Springer, New York (1972) CrossRefGoogle Scholar
  40. 40.
    Mandelbrot, B.: Multiplications aléatoires itérées et distributions invariantes par moyennes pondérées. C. R. Acad. Sci. Paris 278, 289–292, 355–358 (1974) MathSciNetMATHGoogle Scholar
  41. 41.
    Mandelbrot, B.: Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974) ADSMATHCrossRefGoogle Scholar
  42. 42.
    Mandelbrot, B.: A class of multinomial multifractal measures with negative (latent) values for the “dimension” f(α). In: Fractals’ Physical Origin and Properties, Erice, 1988. Ettore Majorana Internat. Sci. Ser. Phys. Sci., vol. 45, p. 329. Plenum, New York (1989) Google Scholar
  43. 43.
    Mandelbrot, B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, Berlin (1997) MATHGoogle Scholar
  44. 44.
    Meyer, M., Stiedl, O.: Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur. J. Appl. Physiol. 90, 305–316 (2003) CrossRefGoogle Scholar
  45. 45.
    Molchan, G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Muzy, J.F., Bacry, E., Arnéodo, A.: The multifractal formalism revisited with wavelets. Int. J. Bifurc. 4, 245–302 (1994) MATHCrossRefGoogle Scholar
  47. 47.
    Olsen, L.: A multifractal formalism. Adv. Math. 116, 92–195 (1995) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ossiander, M., Waymire, E.C.: Statistical estimation for multiplicative cascades. Ann. Stat. 28, 1–29 (2000) MathSciNetGoogle Scholar
  49. 49.
    Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, SMF, 187–188 (1990) Google Scholar
  50. 50.
    Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1997) Google Scholar
  51. 51.
    Peyrière, J.: A vectorial multifractal formalism. Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, pp. 217–230. Proc. Sympos. Pure Math., vol. 72, Part 2. Am. Math. Soc., Providence (2004) Google Scholar
  52. 52.
    Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Am. Math. Soc. 2, 161 (1975) 140 pp MathSciNetGoogle Scholar
  53. 53.
    Rand, D.A.: The singularity spectrum f(α) for cookie-cutters. Ergod. Theory Dyn. Syst. 9, 527–541 (1989) MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Riedi, R.H.: An improved multifractal formalism and self-similar measures. J. Math. Anal. Appl. 189, 462–490 (1995) MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Riedi, R.H.: Multifractal processes. In: Doukhan, P.P., Oppenheim, G., Taqqu, M.S. (eds.) Long Range Dependence: Theory and Applications, pp. 625–717. Birkhäuser, Basel (2003) Google Scholar
  56. 56.
    Riedi, R.H., Lévy-Véhel, J.: (1997). TCP Traffic is multifractal: a numerical study. INRIA Tech. Rep. INRIA-RR-3129 Google Scholar
  57. 57.
    Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Mathematics and Its Applications, vol. 5. Addison-Wesley, Reading (1978) MATHGoogle Scholar
  58. 58.
    Stanley, H.E., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Ivanov, P.C., Peng, C.K.: Statistical physics and physiology: monofractal and multifractal approaches. Physica A 270, 309–324 (1999) ADSCrossRefGoogle Scholar
  59. 59.
    Wendt, H., Roux, S., Jaffard, S., Abry, P.: Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 6(89), 1100–1114 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LAGA (UMR 7539), Département de MathématiquesInstitut Galilée, Université Paris 13VilletaneuseFrance
  2. 2.RESO projectINRIA Rhône-Alpes and ENS Lyon-LIPLyon cedex 07France

Personalised recommendations