Journal of Statistical Physics

, 144:923 | Cite as

A New Model for Self-organized Dynamics and Its Flocking Behavior



We introduce a model for self-organized dynamics which, we argue, addresses several drawbacks of the celebrated Cucker-Smale (C-S) model. The proposed model does not only take into account the distance between agents, but instead, the influence between agents is scaled in term of their relative distance. Consequently, our model does not involve any explicit dependence on the number of agents; only their geometry in phase space is taken into account. The use of relative distances destroys the symmetry property of the original C-S model, which was the key for the various recent studies of C-S flocking behavior. To this end, we introduce here a new framework to analyze the phenomenon of flocking for a rather general class of dynamical systems, which covers systems with non-symmetric influence matrices. In particular, we analyze the flocking behavior of the proposed model as well as other strongly asymmetric models with “leaders”.

The methodology presented in this paper, based on the notion of active sets, carries over from the particle to kinetic and hydrodynamic descriptions. In particular, we discuss the hydrodynamic formulation of our proposed model, and prove its unconditional flocking for slowly decaying influence functions.


Self-organized dynamics Flocking Active sets Kinetic formulation Moments Hydrodynamic formulation 


  1. 1.
    Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. (Japan) 48(8), 1081 (1982) CrossRefGoogle Scholar
  2. 2.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Birnir, B.: An ODE model of the motion of pelagic fish. J. Stat. Phys. 128(1), 535–568 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006). American Association for the Advancement of Science ADSCrossRefGoogle Scholar
  5. 5.
    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001) Google Scholar
  6. 6.
    Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852 (2007) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2(1), 197–227 (2007) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(1), 1193–1215 (2008) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Degond, P., Motsch, S.: Large scale dynamics of the persistent turning walker model of fish behavior. J. Stat. Phys. 131(6), 989–1021 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Grimm, V., Railsback, S.F.: Individual-Based Modeling and Ecology. Princeton University Press, Princeton (2005) MATHGoogle Scholar
  13. 13.
    Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 25702 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    Ha, S.Y., Liu, J.G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009) MathSciNetMATHGoogle Scholar
  15. 15.
    Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ha, S.Y., Lee, K., Levy, D.: Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system. Commun. Math. Sci. 7(2), 453–469 (2009) MathSciNetMATHGoogle Scholar
  17. 17.
    Hemelrijk, C.K., Hildenbrandt, H.: Self-organized shape and frontal density of fish schools. Ethology 114(3), 245–254 (2008) CrossRefGoogle Scholar
  18. 18.
    Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach. Higher-Dimensional Systems. Springer, Berlin (1995) CrossRefGoogle Scholar
  19. 19.
    Huth, A., Wissel, C.: The simulation of the movement of fish schools. J. Theor. Biol. 156(3), 365–385 (1992) CrossRefGoogle Scholar
  20. 20.
    Huth, A., Wissel, C.: The simulation of fish schools in comparison with experimental data. Ecol. Model. 75, 135–146 (1994) CrossRefGoogle Scholar
  21. 21.
    Parrish, J.K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002). Marine Biological Laboratory, Woods Hole CrossRefGoogle Scholar
  22. 22.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34 (1987) Google Scholar
  23. 23.
    Shen, J.: Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68(3), 694–719 (2008) CrossRefMATHGoogle Scholar
  24. 24.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHGoogle Scholar
  25. 25.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    Viscido, S.V., Parrish, J.K., Grunbaum, D.: Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar. Ecol. Prog. Ser. 273, 239–249 (2004) CrossRefGoogle Scholar
  27. 27.
    Youseff, L., Barbaro, A., Trethewey, P., Birnir, B., Gilbert, J.G.: Parallel modeling of fish interaction. In: 11th IEEE International Conference on Computational Science and Engineering, CSE ’08, pp. 234–241. IEEE Comput. Soc., Los Alamitos (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Scientific Computation and Mathematical Modeling (CSCAMM)University of MarylandCollege ParkUSA
  2. 2.Department of Mathematics, Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations