Skip to main content
Log in

The Mathematics of Mixing Things Up

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

How long should a Markov chain Monte Carlo algorithm be run? Using examples from statistical physics (Ehrenfest urn, Ising model, hard discs) as well as card shuffling, this tutorial paper gives an overview of a body of mathematical results that can give useful answers to practitioners (viz: seven shuffles suffice for practical purposes). It points to new techniques (path coupling, geometric inequalities, and Harris recurrence). The discovery of phase transitions in mixing times (the cutoff phenomenon) is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. Monograph (2002)

  2. Andersen, H.C., Diaconis, P.: Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl. 148(4), 5–28 (2007)

    MathSciNet  Google Scholar 

  3. Anderson, W.J.: Continuous-Time Markov Chains. Springer Series in Statistics: Probability and Its Applications. Springer, New York (1991). An Applications-Oriented Approach

    Book  MATH  Google Scholar 

  4. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses], vol. 10. Société Mathématique de France, Paris (2000). With a preface by Dominique Bakry and Michel Ledoux

    MATH  Google Scholar 

  5. Bakry, D., Barthe, F., Cattiaux, P., Guillin, A.: A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13, 60–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bayer, D., Diaconis, P.: Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bormashenko, O.: A coupling proof for random transpositions. Preprint, Stanford University Department of Mathematics (2011)

  9. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: Proceedings. 38th Annual Symposium on Foundations of Computer Science (Cat. No. 97CB36150), pp. 223–231. IEEE Comput. Soc., Miami Beach (1997)

    Chapter  Google Scholar 

  10. Burdzy, K., Kendall, W.S.: Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab. 10(2), 362–409 (2000)

    Article  MathSciNet  Google Scholar 

  11. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)

    Article  MathSciNet  Google Scholar 

  12. Chen, G.Y., Saloff-Coste, L.: The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13(3), 26–78 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Conger, M.A., Howald, J.: A better way to deal the cards. Am. Math. Mon. 117(8), 686–700 (2010). doi:10.4169/000298910X515758

    Article  MathSciNet  MATH  Google Scholar 

  14. Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11. Institute of Mathematical Statistics, Hayward (1988)

    MATH  Google Scholar 

  15. Diaconis, P.: Mathematical developments from the analysis of riffle shuffling. In: Groups, Combinatorics & Geometry, Durham, 2001, pp. 73–97. World Scientific, River Edge (2003)

    Chapter  Google Scholar 

  16. Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.) 46(2), 179–205 (2009). doi:10.1090/S0273-0979-08-01238-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Diaconis, P., Fill, J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diaconis, P., Fulman, J., Holmes, S.: Analysis of casino shelf shuffling machines. ArXiv e-prints (2011). http://adsabs.harvard.edu/abs/2011arXiv1107.2961D

  19. Diaconis, P., Graham, R.L., Morrison, J.A.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Struct. Algorithms 1(1), 51–72 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diaconis, P., Khare, K., Saloff-Coste, L.: Gibbs sampling, exponential families and orthogonal polynomials. Stat. Sci. 23(2), 151–178 (2008). doi:10.1214/07-STS252. With comments and a rejoinder by the authors

    Article  MathSciNet  Google Scholar 

  21. Diaconis, P., Lebeau, G.: Micro-local analysis for the Metropolis algorithm. Math. Z. 262(2), 411–447 (2009). doi:10.1007/s00209-008-0383-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Diaconis, P., Lebeau, G., Michel, L.: Geometric analysis for the Metropolis algorithm on Lipshitz domains. Invent. Math. 185(2), 239–281 (2011). doi:10.1007/s00222-010-0303-6

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Diaconis, P., Neuberger, J.W.: Numerical results for the Metropolis algorithm. Exp. Math. 13(2), 207–213 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diaconis, P., Saloff-Coste, L.: Nash inequalities for finite Markov chains. J. Theor. Probab. 9(2), 459–510 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diaconis, P., Shahshahani, M.: Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18(1), 208–218 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fill, J.A.: An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8(1), 131–162 (1998). doi:10.1214/aoap/1027961037

    Article  MathSciNet  MATH  Google Scholar 

  29. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Computational Science Series, vol. 1, 2nd edn. Academic Press, San Diego (2002)

    Google Scholar 

  30. Frieze, A., Vigoda, E.: A survey on the use of Markov chains to randomly sample colourings. In: Combinatorics, Complexity, and Chance. Oxford Lecture Ser. Math. Appl., vol. 34, pp. 53–71. Oxford University Press, Oxford (2007). doi:10.1093/acprof:oso/9780198571278.003.0004

    Chapter  Google Scholar 

  31. Fulman, J.: Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting. J. Algebra 231(2), 614–639 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jones, G.L., Hobert, J.P.: Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat. Sci. 16(4), 312–334 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Joulin, A., Ollivier, Y.: Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38(6), 2418–2442 (2010). doi:10.1214/10-AOP541

    Article  MathSciNet  MATH  Google Scholar 

  34. Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369–391 (1947)

    Article  MATH  Google Scholar 

  35. Kannan, R., Mahoney, M.W., Montenegro, R.: Rapid mixing of several Markov chains for a hard-core model. In: Algorithms and Computation. Lecture Notes in Comput. Sci., vol. 2906, pp. 663–675. Springer, Berlin (2003)

    Chapter  Google Scholar 

  36. Kendall, W.S.: Geometric ergodicity and perfect simulation. Electron. Commun. Probab. 9, 140–151 (electronic) (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Krauth, W.: Statistical Mechanics. Oxford Master Series in Physics. Oxford University Press, Oxford (2006). Algorithms and Computations, Oxford Master Series in Statistical Computational, and Theoretical Physics

    MATH  Google Scholar 

  38. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. Cambridge University Press, Cambridge (2005). doi10.1017/CBO9780511614460

    Book  MATH  Google Scholar 

  39. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. Am. Math. Soc., Providence (2009). With a chapter by James G. Propp and David B. Wilson

    MATH  Google Scholar 

  40. Lubetzky, E., Martinelli, F., Sly, A., Lucio Toninelli, F.: Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. ArXiv e-prints (2010). http://adsabs.harvard.edu/abs/2010arXiv1012.1271L

  41. Lubetzky, E., Sly, A.: Cutoff for the Ising model on the lattice. ArXiv e-prints (2009). http://adsabs.harvard.edu/abs/2009arXiv0909.4320L

  42. Lubetzky, E., Sly, A.: Critical Ising on the square lattice mixes in polynomial time. ArXiv e-prints (2010). http://adsabs.harvard.edu/abs/2010arXiv1001.1613L

  43. Martinelli, F.: Relaxation times of Markov chains in statistical mechanics and combinatorial structures. In: Probability on Discrete Structures. Encyclopaedia Math. Sci., vol. 110, pp. 175–262. Springer, Berlin (2004)

    Google Scholar 

  44. Matthews, P.: Strong stationary times and eigenvalues. J. Appl. Probab. 29(1), 228–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006)

  46. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. ArXiv Mathematics e-prints (2007)

  47. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1–2), 223–252 (1996). Proceedings of the Seventh International Conference on Random Structures and Algorithms, Atlanta, 1995

    Article  MathSciNet  MATH  Google Scholar 

  48. Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1996. Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)

    Chapter  Google Scholar 

  49. Silver, J.S.: Weighted Poincaré and exhaustive approximation techniques for scaled Metropolis-Hastings algorithms and spectral total variation convergence bounds in infinite commutable Markov chain theory. Ph.D. thesis, Harvard University, Department of Mathematics (1996)

  50. Smith, A.: A Gibbs sampler on the n-simplex. Preprint, Stanford University, Department of Mathematics (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Persi Diaconis.

Additional information

Research supported in part by National Science Foundation grant DMS 0804324.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconis, P. The Mathematics of Mixing Things Up. J Stat Phys 144, 445–458 (2011). https://doi.org/10.1007/s10955-011-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0284-x

Keywords

Navigation