The Mathematics of Mixing Things Up

  • Persi Diaconis


How long should a Markov chain Monte Carlo algorithm be run? Using examples from statistical physics (Ehrenfest urn, Ising model, hard discs) as well as card shuffling, this tutorial paper gives an overview of a body of mathematical results that can give useful answers to practitioners (viz: seven shuffles suffice for practical purposes). It points to new techniques (path coupling, geometric inequalities, and Harris recurrence). The discovery of phase transitions in mixing times (the cutoff phenomenon) is emphasized.


Markov chains Rates of convergence Cutoff phenomenon 


  1. 1.
    Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. Monograph (2002) Google Scholar
  2. 2.
    Andersen, H.C., Diaconis, P.: Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl. 148(4), 5–28 (2007) MathSciNetGoogle Scholar
  3. 3.
    Anderson, W.J.: Continuous-Time Markov Chains. Springer Series in Statistics: Probability and Its Applications. Springer, New York (1991). An Applications-Oriented Approach MATHCrossRefGoogle Scholar
  4. 4.
    Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses], vol. 10. Société Mathématique de France, Paris (2000). With a preface by Dominique Bakry and Michel Ledoux MATHGoogle Scholar
  5. 5.
    Bakry, D., Barthe, F., Cattiaux, P., Guillin, A.: A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13, 60–66 (2008) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bayer, D., Diaconis, P.: Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313 (1992) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bormashenko, O.: A coupling proof for random transpositions. Preprint, Stanford University Department of Mathematics (2011) Google Scholar
  9. 9.
    Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: Proceedings. 38th Annual Symposium on Foundations of Computer Science (Cat. No. 97CB36150), pp. 223–231. IEEE Comput. Soc., Miami Beach (1997) CrossRefGoogle Scholar
  10. 10.
    Burdzy, K., Kendall, W.S.: Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab. 10(2), 362–409 (2000) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, G.Y., Saloff-Coste, L.: The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13(3), 26–78 (2008) MathSciNetMATHGoogle Scholar
  13. 13.
    Conger, M.A., Howald, J.: A better way to deal the cards. Am. Math. Mon. 117(8), 686–700 (2010). doi: 10.4169/000298910X515758 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11. Institute of Mathematical Statistics, Hayward (1988) MATHGoogle Scholar
  15. 15.
    Diaconis, P.: Mathematical developments from the analysis of riffle shuffling. In: Groups, Combinatorics & Geometry, Durham, 2001, pp. 73–97. World Scientific, River Edge (2003) CrossRefGoogle Scholar
  16. 16.
    Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.) 46(2), 179–205 (2009). doi: 10.1090/S0273-0979-08-01238-X MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Diaconis, P., Fill, J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Diaconis, P., Fulman, J., Holmes, S.: Analysis of casino shelf shuffling machines. ArXiv e-prints (2011).
  19. 19.
    Diaconis, P., Graham, R.L., Morrison, J.A.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Struct. Algorithms 1(1), 51–72 (1990) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Diaconis, P., Khare, K., Saloff-Coste, L.: Gibbs sampling, exponential families and orthogonal polynomials. Stat. Sci. 23(2), 151–178 (2008). doi: 10.1214/07-STS252. With comments and a rejoinder by the authors MathSciNetCrossRefGoogle Scholar
  21. 21.
    Diaconis, P., Lebeau, G.: Micro-local analysis for the Metropolis algorithm. Math. Z. 262(2), 411–447 (2009). doi: 10.1007/s00209-008-0383-9 MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Diaconis, P., Lebeau, G., Michel, L.: Geometric analysis for the Metropolis algorithm on Lipshitz domains. Invent. Math. 185(2), 239–281 (2011). doi: 10.1007/s00222-010-0303-6 CrossRefMathSciNetADSMATHGoogle Scholar
  23. 23.
    Diaconis, P., Neuberger, J.W.: Numerical results for the Metropolis algorithm. Exp. Math. 13(2), 207–213 (2004) MathSciNetMATHGoogle Scholar
  24. 24.
    Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Diaconis, P., Saloff-Coste, L.: Nash inequalities for finite Markov chains. J. Theor. Probab. 9(2), 459–510 (1996) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Diaconis, P., Shahshahani, M.: Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18(1), 208–218 (1987) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Fill, J.A.: An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8(1), 131–162 (1998). doi: 10.1214/aoap/1027961037 MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Computational Science Series, vol. 1, 2nd edn. Academic Press, San Diego (2002) Google Scholar
  30. 30.
    Frieze, A., Vigoda, E.: A survey on the use of Markov chains to randomly sample colourings. In: Combinatorics, Complexity, and Chance. Oxford Lecture Ser. Math. Appl., vol. 34, pp. 53–71. Oxford University Press, Oxford (2007). doi: 10.1093/acprof:oso/9780198571278.003.0004 CrossRefGoogle Scholar
  31. 31.
    Fulman, J.: Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting. J. Algebra 231(2), 614–639 (2000) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Jones, G.L., Hobert, J.P.: Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat. Sci. 16(4), 312–334 (2001) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Joulin, A., Ollivier, Y.: Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38(6), 2418–2442 (2010). doi: 10.1214/10-AOP541 MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369–391 (1947) MATHCrossRefGoogle Scholar
  35. 35.
    Kannan, R., Mahoney, M.W., Montenegro, R.: Rapid mixing of several Markov chains for a hard-core model. In: Algorithms and Computation. Lecture Notes in Comput. Sci., vol. 2906, pp. 663–675. Springer, Berlin (2003) CrossRefGoogle Scholar
  36. 36.
    Kendall, W.S.: Geometric ergodicity and perfect simulation. Electron. Commun. Probab. 9, 140–151 (electronic) (2004) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Krauth, W.: Statistical Mechanics. Oxford Master Series in Physics. Oxford University Press, Oxford (2006). Algorithms and Computations, Oxford Master Series in Statistical Computational, and Theoretical Physics MATHGoogle Scholar
  38. 38.
    Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. Cambridge University Press, Cambridge (2005). doi 10.1017/CBO9780511614460 MATHCrossRefGoogle Scholar
  39. 39.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. Am. Math. Soc., Providence (2009). With a chapter by James G. Propp and David B. Wilson MATHGoogle Scholar
  40. 40.
    Lubetzky, E., Martinelli, F., Sly, A., Lucio Toninelli, F.: Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. ArXiv e-prints (2010).
  41. 41.
    Lubetzky, E., Sly, A.: Cutoff for the Ising model on the lattice. ArXiv e-prints (2009).
  42. 42.
    Lubetzky, E., Sly, A.: Critical Ising on the square lattice mixes in polynomial time. ArXiv e-prints (2010).
  43. 43.
    Martinelli, F.: Relaxation times of Markov chains in statistical mechanics and combinatorial structures. In: Probability on Discrete Structures. Encyclopaedia Math. Sci., vol. 110, pp. 175–262. Springer, Berlin (2004) Google Scholar
  44. 44.
    Matthews, P.: Strong stationary times and eigenvalues. J. Appl. Probab. 29(1), 228–233 (1992) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006) Google Scholar
  46. 46.
    Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. ArXiv Mathematics e-prints (2007) Google Scholar
  47. 47.
    Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1–2), 223–252 (1996). Proceedings of the Seventh International Conference on Random Structures and Algorithms, Atlanta, 1995 MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1996. Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997) CrossRefGoogle Scholar
  49. 49.
    Silver, J.S.: Weighted Poincaré and exhaustive approximation techniques for scaled Metropolis-Hastings algorithms and spectral total variation convergence bounds in infinite commutable Markov chain theory. Ph.D. thesis, Harvard University, Department of Mathematics (1996) Google Scholar
  50. 50.
    Smith, A.: A Gibbs sampler on the n-simplex. Preprint, Stanford University, Department of Mathematics (2011) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Mathematics and StatisticsStanford UniversityStanfordUSA

Personalised recommendations