Journal of Statistical Physics

, Volume 144, Issue 1, pp 60–75 | Cite as

Localization Criteria for Anderson Models on Locally Finite Graphs

  • Martin Tautenhahn


We prove spectral and dynamical localization for Anderson models on locally finite graphs using the fractional moment method. Our theorems extend earlier results on localization for the Anderson model on ℤ d . We establish geometric assumptions for the underlying graph such that localization can be proven in the case of sufficiently large disorder.


Anderson model Localization Fractional moment method Locally finite graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6(5a), 1163–1182 (1994) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A, Math. Gen. 31(32), 6783–6806 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157(2), 245–278 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224(1), 219–253 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958) ADSCrossRefGoogle Scholar
  6. 6.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Springer, Berlin (1987) MATHGoogle Scholar
  7. 7.
    del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, iv. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69(1), 153–200 (1996) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101(1), 21–46 (1985) ADSMATHCrossRefGoogle Scholar
  10. 10.
    Fujiwara, K.: The Laplacian on rapidly branching trees. Duke Math. J. 83(1), 191–202 (1996) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Graf, G.M.: Anderson localization and the space-time characteristic of continuum states. J. Stat. Phys. 75(1–2), 337–346 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Hammersley, J.M.: Percolation processes II. The connective constant. Proc. Camb. Phil. Soc. 53(3), 642–645 (1957) MathSciNetMATHCrossRefADSGoogle Scholar
  13. 13.
    Hammersley, J.M.: Long-chain polymers and self-avoiding random walks II. Sankhya, Ser. A 25(1), 269–272 (1963) MathSciNetGoogle Scholar
  14. 14.
    Hamza, E., Joye, A., Stolz, G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12(4), 381–444 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hara, T., Slade, G., Sokal, D.: New lower bounds on the self-avoiding-walk connective constant. J. Stat. Phys. 72(3–4), 479–517 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Hundertmark, D.: On the time-dependent approach to Anderson localization. Math. Nachr. 214(1), 25–38 (2000) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hundertmark, D.: A short introduction to Anderson localization. In: Analysis and Stochastics of Growth Processes and Interface Models, pp. 194–219. Oxford Scholarship Online Monographs (2008). Chap. 9 CrossRefGoogle Scholar
  18. 18.
    Jorgensen, P.E.T.: Essentially selfadjointness of the graph-Laplacian. J. Math. Phys. 49(7), 073510 (2008) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Keller, M.: The essential spectrum of the Laplacian on rapidly branching tessellations. Math. Ann. 346(1), 51–66 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. (2011, to appear). arXiv:0904.2985v2 [math.FA]
  21. 21.
    Ruelle, D.: A remark on bound states in potential scattering theory. Riv. Nuovo Cimento 61A(4), 655–662 (1969) MathSciNetADSGoogle Scholar
  22. 22.
    Stolz, G.: An introduction to the mathematics of Anderson localization. Lecture notes of the Arizona School of Analysis with Applications. (2010)
  23. 23.
    Tautenhahn, M.: Localization criteria for Anderson models on locally finite graphs. Preprint arXiv:1008.4503v5 [math.SP] (2011)
  24. 24.
    Teschl, G.: Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators. Graduate Studies in Mathematics vol. 99. Am. Math. Soc., Providence (2009) MATHGoogle Scholar
  25. 25.
    von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124(2), 285–299 (1989) ADSMATHCrossRefGoogle Scholar
  26. 26.
    Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370(1), 146–158 (2010) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Wojciechowski, R.K.: Stochastic completeness of graphs. Ph.D. thesis. The Graduate Center of the City University of New York (2008). arXiv:0712.1570v2 [math.SP]

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations