Skip to main content
Log in

Localization Criteria for Anderson Models on Locally Finite Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove spectral and dynamical localization for Anderson models on locally finite graphs using the fractional moment method. Our theorems extend earlier results on localization for the Anderson model on ℤd. We establish geometric assumptions for the underlying graph such that localization can be proven in the case of sufficiently large disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6(5a), 1163–1182 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A, Math. Gen. 31(32), 6783–6806 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157(2), 245–278 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224(1), 219–253 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  6. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Springer, Berlin (1987)

    MATH  Google Scholar 

  7. del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, iv. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69(1), 153–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  ADS  MATH  Google Scholar 

  9. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101(1), 21–46 (1985)

    Article  ADS  MATH  Google Scholar 

  10. Fujiwara, K.: The Laplacian on rapidly branching trees. Duke Math. J. 83(1), 191–202 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graf, G.M.: Anderson localization and the space-time characteristic of continuum states. J. Stat. Phys. 75(1–2), 337–346 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hammersley, J.M.: Percolation processes II. The connective constant. Proc. Camb. Phil. Soc. 53(3), 642–645 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Hammersley, J.M.: Long-chain polymers and self-avoiding random walks II. Sankhya, Ser. A 25(1), 269–272 (1963)

    MathSciNet  Google Scholar 

  14. Hamza, E., Joye, A., Stolz, G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12(4), 381–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hara, T., Slade, G., Sokal, D.: New lower bounds on the self-avoiding-walk connective constant. J. Stat. Phys. 72(3–4), 479–517 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hundertmark, D.: On the time-dependent approach to Anderson localization. Math. Nachr. 214(1), 25–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hundertmark, D.: A short introduction to Anderson localization. In: Analysis and Stochastics of Growth Processes and Interface Models, pp. 194–219. Oxford Scholarship Online Monographs (2008). Chap. 9

    Chapter  Google Scholar 

  18. Jorgensen, P.E.T.: Essentially selfadjointness of the graph-Laplacian. J. Math. Phys. 49(7), 073510 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Keller, M.: The essential spectrum of the Laplacian on rapidly branching tessellations. Math. Ann. 346(1), 51–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. (2011, to appear). arXiv:0904.2985v2 [math.FA]

  21. Ruelle, D.: A remark on bound states in potential scattering theory. Riv. Nuovo Cimento 61A(4), 655–662 (1969)

    MathSciNet  ADS  Google Scholar 

  22. Stolz, G.: An introduction to the mathematics of Anderson localization. Lecture notes of the Arizona School of Analysis with Applications. http://www.mathphys.org/AZschool/materials.html (2010)

  23. Tautenhahn, M.: Localization criteria for Anderson models on locally finite graphs. Preprint arXiv:1008.4503v5 [math.SP] (2011)

  24. Teschl, G.: Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators. Graduate Studies in Mathematics vol. 99. Am. Math. Soc., Providence (2009)

    MATH  Google Scholar 

  25. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124(2), 285–299 (1989)

    Article  ADS  MATH  Google Scholar 

  26. Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370(1), 146–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wojciechowski, R.K.: Stochastic completeness of graphs. Ph.D. thesis. The Graduate Center of the City University of New York (2008). arXiv:0712.1570v2 [math.SP]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tautenhahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tautenhahn, M. Localization Criteria for Anderson Models on Locally Finite Graphs. J Stat Phys 144, 60–75 (2011). https://doi.org/10.1007/s10955-011-0248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0248-1

Keywords

Navigation