Skip to main content
Log in

A Macroscopic Model for a System of Swarming Agents Using Curvature Control

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226–1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989–1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008) (the ‘Vicsek hydrodynamics’) but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The ‘Vicsek Hydrodynamic model’ appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. (2007)

  2. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232 (2008)

    Article  ADS  Google Scholar 

  3. Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  4. Bertin, E., Droz, M., Grégoire, G.: Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74(2), 22101 (2006)

    Article  ADS  Google Scholar 

  5. Bolley, F., Canizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Arxiv preprint. arXiv:1009.5166 (2010)

  6. Brézis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  7. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  8. Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Preprint (2009)

  9. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cattiaux, P., Chafaï, D., Motsch, S.: Asymptotic analysis and diffusion limit of the persistent turning walker model. Asymptot. Anal. 67(1), 17–31 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Chaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008)

    Article  ADS  Google Scholar 

  13. Chuang, Y., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232(1), 33–47 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Couzin, I.D., Franks, N.R.: Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. Lond. B, Biol. Sci. 270(1511), 139 (2003)

    Article  Google Scholar 

  15. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32(1) (2003)

  16. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  17. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852 (2007)

    Article  MathSciNet  Google Scholar 

  18. Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A 281(1–4), 17–29 (2000)

    Article  ADS  Google Scholar 

  19. Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Russo, G., Pareschi, L. (eds.) Modeling and Computational Methods for Kinetic Equations. Birkhäuser, Basel (2004)

    Chapter  Google Scholar 

  20. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(1), 1193–1215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Degond, P., Motsch, S.: Large scale dynamics of the persistent turning walker model of fish behavior. J. Stat. Phys. 131(6), 989–1021 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Degond, P., Navoret, L., Bon, R., Sanchez, D.: Congestion in a macroscopic model of self-driven particles modeling gregariousness. J. Stat. Phys., 1–41 (2009)

  23. Filbet, F., Laurençot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50(2), 189–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gautrais, J., Jost, C., Soria, M., Campo, A., Motsch, S., Fournier, R., Blanco, S., Theraulaz, G.: Analyzing fish movement as a persistent turning walker. J. Math. Biol. 58(3), 429–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gautrais, J., Theraulaz, G.: In preparation

  26. Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dirichlet Forms, pp. 54–88 (1993)

    Chapter  Google Scholar 

  27. Ha, S.Y., Liu, J.G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hemelrijk, C.K., Hildenbrandt, H.: Self-organized shape and frontal density of fish schools. Ethology 114(3), 245–254 (2008)

    Article  Google Scholar 

  30. Jeanson, R., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus. Behav. Ecol. Sociobiol. 55(4), 388–394 (2004)

    Article  Google Scholar 

  31. Lions, J.L.: Équations différentielles opérationnelles et problèmes aux limites. Springer, Berlin (1961)

    MATH  Google Scholar 

  32. Meyn, S.P., Tweedie, R.L.: Stability of markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Motsch, S., Navoret, L.: Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior. Preprint (2010)

  34. Nagy, M., Daruka, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physica A 373, 445–454 (2007)

    Article  ADS  Google Scholar 

  35. Oksendal, B.: Stochastic Differential Equations: An Introduction With Applications. Springer, New York (1992)

    Google Scholar 

  36. Parrish, J.K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. Marine Biol. Lab. Woods Hole 202(3), 296–305 (2002)

    Article  Google Scholar 

  37. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  38. Szabo, P., Nagy, M., Vicsek, T.: Turning with the others: novel transitions in an SPP model with coupling of accelerations. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO’08, pp. 463–464 (2008)

    Chapter  Google Scholar 

  39. Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math., vol. 1464, pp. 165–251 (1989)

    Google Scholar 

  40. Theraulaz, G., Bonabeau, E., Nicolis, S.C., Sole, R.V., Fourcassie, V., Blanco, S., Fournier, R., Joly, J.L., Fernandez, P., Grimal, A., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99(15), 9645 (2002)

    Article  ADS  MATH  Google Scholar 

  41. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  ADS  Google Scholar 

  42. Viscido, S.V., Parrish, J.K., Grünbaum, D.: Factors influencing the structure and maintenance of fish schools. Ecol. Model. 206(1–2), 153–165 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Motsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degond, P., Motsch, S. A Macroscopic Model for a System of Swarming Agents Using Curvature Control. J Stat Phys 143, 685–714 (2011). https://doi.org/10.1007/s10955-011-0201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0201-3

Keywords

Navigation