Journal of Statistical Physics

, Volume 142, Issue 6, pp 1124–1166 | Cite as

The Value of Information for Populations in Varying Environments

  • Olivier Rivoire
  • Stanislas Leibler


The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon’s communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory.


Information Regulation Fitness Population dynamics Branching processes Control Investment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maynard-Smith, J.: The concept of information in biology. Philos. Sci. 67(2), 177–194 (2000) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Jablonka, E.: Information: Its interpretation, its inheritance, and its sharing. Philos. Sci. 69(4), 578–605 (2002) CrossRefGoogle Scholar
  3. 3.
    Szostak, J.W.: Functional information: molecular messages. Nature 423, 689 (2003) CrossRefADSGoogle Scholar
  4. 4.
    Nurse, P.: Life, logic and information. Nature 454, 424–426 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Quastler, H. (ed.): Essays on the Use of Information Theory in Biology. University of Illinois, Urbana (1953) Google Scholar
  6. 6.
    Rashevsky, N.: Life, information theory, and topology. Bull. Math. Biol. 17, 229–235 (1955) MathSciNetGoogle Scholar
  7. 7.
    Atlan, H.: L’organisation biologique et la théorie de l’information. Hermann, Paris (1972) MATHGoogle Scholar
  8. 8.
    Berger, T.: Living information theory. IEEE Inf. Theory Soc. Newsl. 53, 1–19 (2003) Google Scholar
  9. 9.
    Adami, C.: Information theory in molecular biology. Phys. Life Rev. 1, 3–22 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Taylor, S.F., Tishby, N., Bialek, W.: Information and fitness. arXiv:0712.4382 (2007)
  11. 11.
    Polani, D.: Information: currency of life? HFSP J. 5, 307–316 (2009) CrossRefGoogle Scholar
  12. 12.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) MATHMathSciNetGoogle Scholar
  13. 13.
    Shannon, C.E.: Coding theorems for a discrete source with a fidelity criterion. IRE Natl. Conv. Rec. 7, 142–163 (1959) Google Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991) CrossRefMATHGoogle Scholar
  15. 15.
    Csiszár, I.: Axiomatic characterizations of information measures. Entropy 10, 261–273 (2008) CrossRefMATHADSGoogle Scholar
  16. 16.
    Shannon, C.: The bandwagon. Trans. Inf. Theory 2, 3 (1956) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10(1), 18–24 (1943) CrossRefGoogle Scholar
  18. 18.
    Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948) Google Scholar
  19. 19.
    Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd, London (1956) MATHGoogle Scholar
  20. 20.
    Ashby, W.R.: Requisite variety and its implications for the control of complex systems. Cybernetica 1, 83–99 (1958) MATHGoogle Scholar
  21. 21.
    Touchette, H., Lloyd, S.: Information-theoretic limits of control. Phys. Rev. Lett. 84(6), 1156–1159 (2000) CrossRefADSGoogle Scholar
  22. 22.
    Touchette, H., Lloyd, S.: Information-theoretic approach to the study of control systems. Physica A 331, 140–172 (2004) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Mitter, S.K.: Control with limited information. Eur. J. Control 7(2–3), 122–131 (2001) CrossRefGoogle Scholar
  24. 24.
    Marko, H.: The bidirectional communication theory—a generalization of information theory. IEEE Trans. Inf. Theory 21, 1345–1351 (1973) Google Scholar
  25. 25.
    Massey, J.L.: Causality, feedback and directed information. In: Proc. Intl. Symp. Info. Theory Applic. (ISITA-90), pp. 303–305 (1990) Google Scholar
  26. 26.
    Seger, J., Brockmann, H.J.: What is bet-hedging? Oxf. Surv. Evol. Biol. 4, 182–211 (1987) Google Scholar
  27. 27.
    Lewontin, R.C., Cohen, D.: On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62, 1056–1060 (1969) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Real, L.A.: Fitness uncertainty and the role of diversification in evolution and behaviour. Am. Nat. 115, 623–638 (1980) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Stearns, S.C.: Daniel Bernoulli (1738): evolution and economics under risk. J. Biosci. 25, 221–228 (2000) CrossRefGoogle Scholar
  30. 30.
    Wagner, A.: Risk management in biological evolution. J. Theor. Biol. 225, 45–57 (2003) CrossRefGoogle Scholar
  31. 31.
    Stephens, D.W.: Variance and the value of information. Am. Nat. 134, 128–140 (1989) CrossRefGoogle Scholar
  32. 32.
    Bergstrom, C.T., Lachmann, M.: Shannon information and biological fitness. In: Information Theory Workshop IEEE ’04, San Antonio, Texas, pp. 50–54 (2004) Google Scholar
  33. 33.
    Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005) CrossRefADSGoogle Scholar
  34. 34.
    Donaldson-Matasci, M.C., Bergstrom, C.T., Lachmann, M.: The fitness value of information. Oikos 119, 219–230 (2010) CrossRefGoogle Scholar
  35. 35.
    Kelly, J.: New interpretation of information rate. Bell Syst. Tech. J. 35, 917–926 (1956) Google Scholar
  36. 36.
    Breiman, L.: Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 65–78. University of California Press, Berkeley (1961) Google Scholar
  37. 37.
    Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16, 876–898 (1988) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Barron, A.R., Cover, T.M.: A bound on the financial value of information. IEEE Trans. Inf. Theory 34, 1097–1100 (1988) CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Cover, T.M.: Shannon and investment. IEEE Inf. Theory Soc. Newsl. (Special Golden Jubilee Issue) 10–11 (1998) Google Scholar
  40. 40.
    Permuter, H.H., Kim, Y.-H., Weissman, T.: On directed information and gambling. In: Proc. International Symposium on Information Theory (ISIT), Toronto, Canada (2008) Google Scholar
  41. 41.
    Perkins, T.J., Swain, P.S.: Strategies for cellular decision-making. Mol. Syst. Biol. 5, 326 (2009) CrossRefGoogle Scholar
  42. 42.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Academic Press, New York (1975) MATHGoogle Scholar
  43. 43.
    Pack Kaelbling, L., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101, 99–134 (1998) CrossRefMATHGoogle Scholar
  44. 44.
    Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960) CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883–899 (1973) CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Tanny, D.: On multitype branching processes in a random environment. Adv. Appl. Probab. 13, 464–497 (1981) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Kramer, G.: Directed information for channels with feedback. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich (1998) Google Scholar
  48. 48.
    Kim, Y.-H.: A coding theorem for a class of stationary channels with feedback. IEEE Trans. Inf. Theory 25, 1488–1499 (2008) CrossRefGoogle Scholar
  49. 49.
    Witsenhausen, H.S.: Separation of estimation and control for discrete time systems. Proc. IEEE 59, 1557–1566 (1971) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Berlin (1985) MATHGoogle Scholar
  51. 51.
    Gastpar, M., Rimoldi, B., Vetterli, M.: To code, or not to code: lossy source-channel communication revisited. IEEE Trans. Inf. Theory 49, 1147–1158 (2003) CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Leslie, P.: On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945) CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Kussell, E., Leibler, S., Grosberg, A.: Polymer-population mapping and localization in the space of phenotypes. Phys. Rev. Lett. 97, 068101 (2006) CrossRefADSGoogle Scholar
  54. 54.
    Iyengar, G.N., Cover, T.M.: Growth optimal investment in horse race markets with costs. IEEE Trans. Inf. Theory 46, 2675–2683 (2000) CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Tuljapurkar, S., Horvitz, C.C., Pascarella, J.B.: The many growth rates and elasticities of populations in random environments. Am. Nat. 162, 489–502 (2003) CrossRefGoogle Scholar
  56. 56.
    Haccou, P., Iwasa, Y.: Optimal mixed strategies in stochastic environments. Theor. Popul. Biol. 47, 212–243 (1995) CrossRefMATHGoogle Scholar
  57. 57.
    Sasaki, A., Ellner, S.: The evolutionarily stable phenotype distribution in a random environment. Evolution 49, 337–350 (1995) CrossRefGoogle Scholar
  58. 58.
    Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969) CrossRefGoogle Scholar
  59. 59.
    Godfrey-Smith, P.: Information in biology. In: Hull, D., Ruse, M. (eds.) The Cambridge Companion to the Philosophy of Biology, pp. 103–119. Cambridge University Press, Cambridge (2007) Google Scholar
  60. 60.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972) MATHGoogle Scholar
  61. 61.
    Kurtz, T.G., Lyons, R., Pemantle, R., Peres, Y.: A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In: Athreya, K.B., Jagers, P. (eds.) Classical and Modern Branching Processes. IMA Volumes in Mathematics and its Applications, vol. 84, pp. 181–185. Springer, New York (1997) CrossRefGoogle Scholar
  62. 62.
    Bernoulli, D.: Specimen theoriae novae de mensura sortis. Pap. Imp. Acad. Sci. St. Petersburg 5, 175–192 (1738) Google Scholar
  63. 63.
    Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952) CrossRefGoogle Scholar
  64. 64.
    Morsegaard Christensen, M.: On the history of the growth optimal portfolio. Unpublished (2005) Google Scholar
  65. 65.
    Samuelson, P.A.: The fallacy of maximizing the geometric mean in long sequences of investing or gambling. Proc. Natl. Acad. Sci. USA 68, 2493–2496 (1971) CrossRefMATHADSMathSciNetGoogle Scholar
  66. 66.
    Maynard Smith, J., Price, G.: The logic of animal conflict. Nature 248, 15–18 (1973) CrossRefGoogle Scholar
  67. 67.
    Mills, S., Beatty, J.: The propensity interpretation of fitness. Philos. Sci. 46, 263–286 (1979) CrossRefGoogle Scholar
  68. 68.
    Beatty, J., Finsen, S.: Rethinking the propensity interpretation: a peek inside Pandora’s box. In: Ruse, M. (ed.) What the Philosophy of Biology Is, Essays Dedicated to David Hull. Kluwer Academic, Dordrecht (1989) Google Scholar
  69. 69.
    Robson, A.J.: A biological basis for expected and non-expected utility. J. Econ. Theory 68, 397–424 (1996) CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J., 535 (1928) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LIPhy UMR 5588CNRSGrenobleFrance
  2. 2.Laboratory of Living MatterThe Rockefeller UniversityNew YorkUSA
  3. 3.School of Natural Sciences, The Simons Center for Systems BiologyThe Institute for Advanced StudyPrincetonUSA

Personalised recommendations