Skip to main content
Log in

The Value of Information for Populations in Varying Environments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon’s communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maynard-Smith, J.: The concept of information in biology. Philos. Sci. 67(2), 177–194 (2000)

    Article  MathSciNet  Google Scholar 

  2. Jablonka, E.: Information: Its interpretation, its inheritance, and its sharing. Philos. Sci. 69(4), 578–605 (2002)

    Article  Google Scholar 

  3. Szostak, J.W.: Functional information: molecular messages. Nature 423, 689 (2003)

    Article  ADS  Google Scholar 

  4. Nurse, P.: Life, logic and information. Nature 454, 424–426 (2008)

    Article  ADS  Google Scholar 

  5. Quastler, H. (ed.): Essays on the Use of Information Theory in Biology. University of Illinois, Urbana (1953)

    Google Scholar 

  6. Rashevsky, N.: Life, information theory, and topology. Bull. Math. Biol. 17, 229–235 (1955)

    MathSciNet  Google Scholar 

  7. Atlan, H.: L’organisation biologique et la théorie de l’information. Hermann, Paris (1972)

    MATH  Google Scholar 

  8. Berger, T.: Living information theory. IEEE Inf. Theory Soc. Newsl. 53, 1–19 (2003)

    Google Scholar 

  9. Adami, C.: Information theory in molecular biology. Phys. Life Rev. 1, 3–22 (2004)

    Article  ADS  Google Scholar 

  10. Taylor, S.F., Tishby, N., Bialek, W.: Information and fitness. arXiv:0712.4382 (2007)

  11. Polani, D.: Information: currency of life? HFSP J. 5, 307–316 (2009)

    Article  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  13. Shannon, C.E.: Coding theorems for a discrete source with a fidelity criterion. IRE Natl. Conv. Rec. 7, 142–163 (1959)

    Google Scholar 

  14. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  15. Csiszár, I.: Axiomatic characterizations of information measures. Entropy 10, 261–273 (2008)

    Article  MATH  ADS  Google Scholar 

  16. Shannon, C.: The bandwagon. Trans. Inf. Theory 2, 3 (1956)

    Article  MathSciNet  Google Scholar 

  17. Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10(1), 18–24 (1943)

    Article  Google Scholar 

  18. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)

    Google Scholar 

  19. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd, London (1956)

    MATH  Google Scholar 

  20. Ashby, W.R.: Requisite variety and its implications for the control of complex systems. Cybernetica 1, 83–99 (1958)

    MATH  Google Scholar 

  21. Touchette, H., Lloyd, S.: Information-theoretic limits of control. Phys. Rev. Lett. 84(6), 1156–1159 (2000)

    Article  ADS  Google Scholar 

  22. Touchette, H., Lloyd, S.: Information-theoretic approach to the study of control systems. Physica A 331, 140–172 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mitter, S.K.: Control with limited information. Eur. J. Control 7(2–3), 122–131 (2001)

    Article  Google Scholar 

  24. Marko, H.: The bidirectional communication theory—a generalization of information theory. IEEE Trans. Inf. Theory 21, 1345–1351 (1973)

    Google Scholar 

  25. Massey, J.L.: Causality, feedback and directed information. In: Proc. Intl. Symp. Info. Theory Applic. (ISITA-90), pp. 303–305 (1990)

    Google Scholar 

  26. Seger, J., Brockmann, H.J.: What is bet-hedging? Oxf. Surv. Evol. Biol. 4, 182–211 (1987)

    Google Scholar 

  27. Lewontin, R.C., Cohen, D.: On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62, 1056–1060 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  28. Real, L.A.: Fitness uncertainty and the role of diversification in evolution and behaviour. Am. Nat. 115, 623–638 (1980)

    Article  MathSciNet  Google Scholar 

  29. Stearns, S.C.: Daniel Bernoulli (1738): evolution and economics under risk. J. Biosci. 25, 221–228 (2000)

    Article  Google Scholar 

  30. Wagner, A.: Risk management in biological evolution. J. Theor. Biol. 225, 45–57 (2003)

    Article  Google Scholar 

  31. Stephens, D.W.: Variance and the value of information. Am. Nat. 134, 128–140 (1989)

    Article  Google Scholar 

  32. Bergstrom, C.T., Lachmann, M.: Shannon information and biological fitness. In: Information Theory Workshop IEEE ’04, San Antonio, Texas, pp. 50–54 (2004)

    Google Scholar 

  33. Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005)

    Article  ADS  Google Scholar 

  34. Donaldson-Matasci, M.C., Bergstrom, C.T., Lachmann, M.: The fitness value of information. Oikos 119, 219–230 (2010)

    Article  Google Scholar 

  35. Kelly, J.: New interpretation of information rate. Bell Syst. Tech. J. 35, 917–926 (1956)

    Google Scholar 

  36. Breiman, L.: Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 65–78. University of California Press, Berkeley (1961)

    Google Scholar 

  37. Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16, 876–898 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Barron, A.R., Cover, T.M.: A bound on the financial value of information. IEEE Trans. Inf. Theory 34, 1097–1100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cover, T.M.: Shannon and investment. IEEE Inf. Theory Soc. Newsl. (Special Golden Jubilee Issue) 10–11 (1998)

  40. Permuter, H.H., Kim, Y.-H., Weissman, T.: On directed information and gambling. In: Proc. International Symposium on Information Theory (ISIT), Toronto, Canada (2008)

    Google Scholar 

  41. Perkins, T.J., Swain, P.S.: Strategies for cellular decision-making. Mol. Syst. Biol. 5, 326 (2009)

    Article  Google Scholar 

  42. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Academic Press, New York (1975)

    MATH  Google Scholar 

  43. Pack Kaelbling, L., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101, 99–134 (1998)

    Article  MATH  Google Scholar 

  44. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  45. Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883–899 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  46. Tanny, D.: On multitype branching processes in a random environment. Adv. Appl. Probab. 13, 464–497 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kramer, G.: Directed information for channels with feedback. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich (1998)

  48. Kim, Y.-H.: A coding theorem for a class of stationary channels with feedback. IEEE Trans. Inf. Theory 25, 1488–1499 (2008)

    Article  Google Scholar 

  49. Witsenhausen, H.S.: Separation of estimation and control for discrete time systems. Proc. IEEE 59, 1557–1566 (1971)

    Article  MathSciNet  Google Scholar 

  50. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Berlin (1985)

    MATH  Google Scholar 

  51. Gastpar, M., Rimoldi, B., Vetterli, M.: To code, or not to code: lossy source-channel communication revisited. IEEE Trans. Inf. Theory 49, 1147–1158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Leslie, P.: On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kussell, E., Leibler, S., Grosberg, A.: Polymer-population mapping and localization in the space of phenotypes. Phys. Rev. Lett. 97, 068101 (2006)

    Article  ADS  Google Scholar 

  54. Iyengar, G.N., Cover, T.M.: Growth optimal investment in horse race markets with costs. IEEE Trans. Inf. Theory 46, 2675–2683 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Tuljapurkar, S., Horvitz, C.C., Pascarella, J.B.: The many growth rates and elasticities of populations in random environments. Am. Nat. 162, 489–502 (2003)

    Article  Google Scholar 

  56. Haccou, P., Iwasa, Y.: Optimal mixed strategies in stochastic environments. Theor. Popul. Biol. 47, 212–243 (1995)

    Article  MATH  Google Scholar 

  57. Sasaki, A., Ellner, S.: The evolutionarily stable phenotype distribution in a random environment. Evolution 49, 337–350 (1995)

    Article  Google Scholar 

  58. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  59. Godfrey-Smith, P.: Information in biology. In: Hull, D., Ruse, M. (eds.) The Cambridge Companion to the Philosophy of Biology, pp. 103–119. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  60. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)

    MATH  Google Scholar 

  61. Kurtz, T.G., Lyons, R., Pemantle, R., Peres, Y.: A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In: Athreya, K.B., Jagers, P. (eds.) Classical and Modern Branching Processes. IMA Volumes in Mathematics and its Applications, vol. 84, pp. 181–185. Springer, New York (1997)

    Chapter  Google Scholar 

  62. Bernoulli, D.: Specimen theoriae novae de mensura sortis. Pap. Imp. Acad. Sci. St. Petersburg 5, 175–192 (1738)

    Google Scholar 

  63. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Article  Google Scholar 

  64. Morsegaard Christensen, M.: On the history of the growth optimal portfolio. Unpublished (2005)

  65. Samuelson, P.A.: The fallacy of maximizing the geometric mean in long sequences of investing or gambling. Proc. Natl. Acad. Sci. USA 68, 2493–2496 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Maynard Smith, J., Price, G.: The logic of animal conflict. Nature 248, 15–18 (1973)

    Article  Google Scholar 

  67. Mills, S., Beatty, J.: The propensity interpretation of fitness. Philos. Sci. 46, 263–286 (1979)

    Article  Google Scholar 

  68. Beatty, J., Finsen, S.: Rethinking the propensity interpretation: a peek inside Pandora’s box. In: Ruse, M. (ed.) What the Philosophy of Biology Is, Essays Dedicated to David Hull. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  69. Robson, A.J.: A biological basis for expected and non-expected utility. J. Econ. Theory 68, 397–424 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  70. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J., 535 (1928)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rivoire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoire, O., Leibler, S. The Value of Information for Populations in Varying Environments. J Stat Phys 142, 1124–1166 (2011). https://doi.org/10.1007/s10955-011-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0166-2

Keywords

Navigation