Journal of Statistical Physics

, Volume 143, Issue 1, pp 139–147 | Cite as

Linear Amplifier Breakdown and Concentration Properties of a Gaussian Field Given that its L 2-Norm is Large

  • Philippe Mounaix
  • Pierre Collet


In the context of linear amplification for systems driven by the square of a Gaussian noise, we investigate the realizations of a Gaussian field in the limit where its L 2-norm is large. Concentration onto the eigenspace associated with the largest eigenvalue of the covariance of the field is proved. When the covariance is trace class, the concentration is in probability for the L 2-norm. A stronger concentration, in mean for the sup-norm, is proved for a smaller class of Gaussian fields, and an example of a field belonging to that class is given. A possible connection with Bose-Einstein condensation is briefly discussed.


Gaussian fields Concentration properties Extreme theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mounaix, Ph., Collet, P., Lebowitz, J.L.: Propagation effects on the breakdown of a linear amplifier model: complex-mass Schrödinger equation driven by the square of a Gaussian field. Commun. Math. Phys. 264, 741–758 (2006). Erratum. Commun. Math. Phys. 280, 281–283 (2008) CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    Mounaix, Ph., Divol, L.: Breakdown of hot-spot model in determining convective amplification in large homogeneous systems. Phys. Rev. Lett. 93, 185003 (2004) CrossRefADSGoogle Scholar
  3. 3.
    Rose, H.A., DuBois, D.F.: Laser hot spots and the breakdown of linear instability theory with application to stimulated Brillouin scattering. Phys. Rev. Lett. 72, 2883 (1994) CrossRefADSGoogle Scholar
  4. 4.
    Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) MATHGoogle Scholar
  5. 5.
    Lifshits, M.A.: Gaussian Random Functions. Mathematics and Its Applications. Kluwer Academic, Dordrecht (1995) Google Scholar
  6. 6.
    Chang, C.-H., Ha, C.-W.: On eigenvalues of differentiable positive definite kernels. Integral Equ. Oper. Theory 33, 1–7 (1999) CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821–835 (1952) CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    Gunton, J.D., Buckingham, M.J.: Condensation of the ideal Bose gas as a cooperative transition. Phys. Rev. 166, 152–158 (1968) CrossRefADSGoogle Scholar
  9. 9.
    Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorised steady states. J. Stat. Phys. 123, 357–390 (2006), and references therein CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre de Physique Théorique, UMR 7644 du CNRSEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations