Journal of Statistical Physics

, Volume 143, Issue 1, pp 33–59

# Ising Correlations and Elliptic Determinants

Article

## Abstract

Correlation functions of the two-dimensional Ising model on the periodic lattice can be expressed in terms of form factors—matrix elements of the spin operator in the basis of common eigenstates of the transfer matrix and translation operator. Free-fermion structure of the model implies that any multiparticle form factor is given by the pfaffian of a matrix constructed from the two-particle ones. Crossed two-particle form factors can be obtained by inverting a block of the matrix of linear transformation induced on fermions by the spin conjugation. We show that the corresponding matrix is of elliptic Cauchy type and use this observation to solve the inversion problem explicitly. Non-crossed two-particle form factors are then obtained using theta functional interpolation formulas. This gives a new simple proof of the factorized formulas for periodic Ising form factors, conjectured by A. Bugrij and one of the authors.

## Keywords

Ising model Form factor Elliptic determinant

## References

1. 1.
Baxter, R.J.: Superintegrable chiral Potts model: thermodynamic properties, an ‘Inverse’ model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1–39 (1989)
2. 2.
Baxter, R.J.: Some remarks on a generalization of the superintegrable chiral Potts model. J. Stat. Phys. 137, 798–813 (2009). arXiv:0906.3551 [cond-mat.stat-mech]
3. 3.
Bazhanov, V.V., Stroganov, Yu.G.: Chiral Potts model as a descendant of the six-vertex model. J. Stat. Phys. 59, 799–817 (1990)
4. 4.
Berezin, F.A.: Method of Secondary Quantization. Nauka, Moscow (1965) Google Scholar
5. 5.
Bugrij, A.I.: Correlation function of the two-dimensional Ising model on a finite lattice: I. Theor. Math. Phys. 127, 528–548 (2001) arXiv:hep-th/0011104
6. 6.
Bugrij, A.I., Lisovyy, O.: Spin matrix elements in 2D Ising model on the finite lattice. Phys. Lett. A 319, 390–394 (2003). arXiv:0708.3625 [nlin.SI]
7. 7.
Bugrij, A.I., Lisovyy, O.: Correlation function of the two-dimensional Ising model on a finite lattice. II. Theor. Math. Phys. 140, 987–1000 (2004). arXiv:0708.3643 [nlin.SI]
8. 8.
Frobenius, F.G.: Über die elliptischen Funktionen zweiter Art. J. Reine Angew. Math. 93, 53–68 (1882).
9. 9.
von Gehlen, G., Iorgov, I., Pakuliak, S., Shadura, V., Tykhyy, Yu.: Form-factors in the Baxter-Bazhanov-Stroganov model I: Norms and matrix elements. J. Phys. A 40, 14117–14138 (2007). arXiv:0708.4342 [nlin.SI]
10. 10.
von Gehlen, G., Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu.: Form-factors in the Baxter-Bazhanov-Stroganov model II: Ising model on the finite lattice. J. Phys. A 41, 095003 (2008). arXiv:0711.0457 [nlin.SI]
11. 11.
Hystad, G.: Periodic Ising correlations. arXiv:1011.2223 [math-ph]
12. 12.
Iorgov, N., Shadura, V., Tykhyy, Yu.: Spin operator matrix elements in the quantum Ising chain: fermion approach. arXiv:1011.2603 [cond-mat.stat-mech]. To appear in J. Stat. Mech.
13. 13.
Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu., von Gehlen, G.: Spin operator matrix elements in the superintegrable chiral Potts quantum chain. J. Stat. Phys. 139, 743–768 (2010). arXiv:0912.5027 [cond-mat.stat-mech]
14. 14.
Iorgov, N.: Form-factors of the finite quantum XY-chain. arXiv:0912.4466 [cond-mat.stat-mech]
15. 15.
Kaufman, B.: Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 76, 1232–1243 (1949)
16. 16.
Kitanine, N., Maillet, J.M., Terras, V.: Form factors of the XXZ Heisenberg spin-1/2 finite chain. Nucl. Phys. B 554, 647–678 (1998). arXiv:math-ph/9807020
17. 17.
Korepanov, I.G.: Hidden symmetries in the 6-vertex model. Chelyabinsk Polytechnical Institute, archive VINITI No. 1472-V87, (1987) Google Scholar
18. 18.
Lisovyy, O.: Transfer matrix eigenvectors of the Baxter-Bazhanov-Stroganov τ 2-model for N=2. J. Phys. A 39, 2265–2285 (2006). arXiv:nlin/0512026 [nlin.SI]
19. 19.
McCoy, B.M.: The connection between statistical mechanics and quantum field theory. In: Bazhanov, V.V., Burden, C.J. (eds.) Statistical Mechanics and Field Theory, pp. 26–128. World Scientific, Singapore (1995). arXiv:hep-th/9403084 Google Scholar
20. 20.
McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard Univ. Press, Harvard (1973)
21. 21.
Nijhoff, F.W., Ragnisco, O., Kuznetsov, V.B.: Integrable time-discretization of the Ruijsenaars-Schneider model. Commun. Math. Phys. 176, 681–700 (1996). arXiv:hep-th/9412170
22. 22.
Nijhoff, F.W., Kuznetsov, V.B., Sklyanin, E.K., Ragnisco, O.: Dynamical r-matrix for the elliptic Ruijsenaars-Schneider system. J. Phys. A 29, L333–L340 (1996). arXiv:solv-int/9603006
23. 23.
Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)
24. 24.
Pakuliak, S., Rubtsov, V., Silantyev, A.: The SOS model partition function and the elliptic weight functions. J. Phys. A 41, 295204 (2008). arXiv:0802.0195 [math.QA]
25. 25.
Palmer, J.: Planar Ising correlations. In: Progress Mathematical Physics, vol. 49. Birkhäuser, Basel (2007) Google Scholar
26. 26.
Palmer, J., Hystad, G.: Spin matrix for the scaled periodic Ising model. J. Math. Phys. 51, 123301 (2010). arXiv:1008.0352 [nlin.SI]
27. 27.
Palmer, J., Tracy, C.A.: Two-dimensional Ising correlations: convergence of the scaling limit. Adv. Appl. Math. 2, 329–388 (1981)
28. 28.
Rosengren, H.: An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137–155 (2009). arXiv:0801.1229 [math.CO]
29. 29.
Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields V. Publ. RIMS, Kyoto Univ. 16, 531–584 (1980)
30. 30.
Sklyanin, E.K.: Functional Bethe ansatz. In: Kupershmidt, B.A. (ed.) Integrable and Superintegrable Systems, pp. 8–33. World Scientific, Singapore (1990)
31. 31.
Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russ. Math. Surv. 63, 405–472 (2008). arXiv:0805.3135 [math.CA]
32. 32.
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge Univ. Press, Cambridge (1962)
33. 33.
Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952)