Advertisement

Journal of Statistical Physics

, Volume 143, Issue 1, pp 33–59 | Cite as

Ising Correlations and Elliptic Determinants

  • N. Iorgov
  • O. Lisovyy
Article

Abstract

Correlation functions of the two-dimensional Ising model on the periodic lattice can be expressed in terms of form factors—matrix elements of the spin operator in the basis of common eigenstates of the transfer matrix and translation operator. Free-fermion structure of the model implies that any multiparticle form factor is given by the pfaffian of a matrix constructed from the two-particle ones. Crossed two-particle form factors can be obtained by inverting a block of the matrix of linear transformation induced on fermions by the spin conjugation. We show that the corresponding matrix is of elliptic Cauchy type and use this observation to solve the inversion problem explicitly. Non-crossed two-particle form factors are then obtained using theta functional interpolation formulas. This gives a new simple proof of the factorized formulas for periodic Ising form factors, conjectured by A. Bugrij and one of the authors.

Keywords

Ising model Form factor Elliptic determinant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter, R.J.: Superintegrable chiral Potts model: thermodynamic properties, an ‘Inverse’ model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1–39 (1989) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Baxter, R.J.: Some remarks on a generalization of the superintegrable chiral Potts model. J. Stat. Phys. 137, 798–813 (2009). arXiv:0906.3551 [cond-mat.stat-mech] CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3.
    Bazhanov, V.V., Stroganov, Yu.G.: Chiral Potts model as a descendant of the six-vertex model. J. Stat. Phys. 59, 799–817 (1990) CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    Berezin, F.A.: Method of Secondary Quantization. Nauka, Moscow (1965) Google Scholar
  5. 5.
    Bugrij, A.I.: Correlation function of the two-dimensional Ising model on a finite lattice: I. Theor. Math. Phys. 127, 528–548 (2001) arXiv:hep-th/0011104 CrossRefMATHGoogle Scholar
  6. 6.
    Bugrij, A.I., Lisovyy, O.: Spin matrix elements in 2D Ising model on the finite lattice. Phys. Lett. A 319, 390–394 (2003). arXiv:0708.3625 [nlin.SI] CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Bugrij, A.I., Lisovyy, O.: Correlation function of the two-dimensional Ising model on a finite lattice. II. Theor. Math. Phys. 140, 987–1000 (2004). arXiv:0708.3643 [nlin.SI] CrossRefGoogle Scholar
  8. 8.
    Frobenius, F.G.: Über die elliptischen Funktionen zweiter Art. J. Reine Angew. Math. 93, 53–68 (1882). CrossRefGoogle Scholar
  9. 9.
    von Gehlen, G., Iorgov, I., Pakuliak, S., Shadura, V., Tykhyy, Yu.: Form-factors in the Baxter-Bazhanov-Stroganov model I: Norms and matrix elements. J. Phys. A 40, 14117–14138 (2007). arXiv:0708.4342 [nlin.SI] CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    von Gehlen, G., Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu.: Form-factors in the Baxter-Bazhanov-Stroganov model II: Ising model on the finite lattice. J. Phys. A 41, 095003 (2008). arXiv:0711.0457 [nlin.SI] ADSMathSciNetGoogle Scholar
  11. 11.
    Hystad, G.: Periodic Ising correlations. arXiv:1011.2223 [math-ph]
  12. 12.
    Iorgov, N., Shadura, V., Tykhyy, Yu.: Spin operator matrix elements in the quantum Ising chain: fermion approach. arXiv:1011.2603 [cond-mat.stat-mech]. To appear in J. Stat. Mech.
  13. 13.
    Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu., von Gehlen, G.: Spin operator matrix elements in the superintegrable chiral Potts quantum chain. J. Stat. Phys. 139, 743–768 (2010). arXiv:0912.5027 [cond-mat.stat-mech] CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Iorgov, N.: Form-factors of the finite quantum XY-chain. arXiv:0912.4466 [cond-mat.stat-mech]
  15. 15.
    Kaufman, B.: Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 76, 1232–1243 (1949) CrossRefMATHADSGoogle Scholar
  16. 16.
    Kitanine, N., Maillet, J.M., Terras, V.: Form factors of the XXZ Heisenberg spin-1/2 finite chain. Nucl. Phys. B 554, 647–678 (1998). arXiv:math-ph/9807020 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Korepanov, I.G.: Hidden symmetries in the 6-vertex model. Chelyabinsk Polytechnical Institute, archive VINITI No. 1472-V87, (1987) Google Scholar
  18. 18.
    Lisovyy, O.: Transfer matrix eigenvectors of the Baxter-Bazhanov-Stroganov τ 2-model for N=2. J. Phys. A 39, 2265–2285 (2006). arXiv:nlin/0512026 [nlin.SI] CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    McCoy, B.M.: The connection between statistical mechanics and quantum field theory. In: Bazhanov, V.V., Burden, C.J. (eds.) Statistical Mechanics and Field Theory, pp. 26–128. World Scientific, Singapore (1995). arXiv:hep-th/9403084 Google Scholar
  20. 20.
    McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard Univ. Press, Harvard (1973) MATHGoogle Scholar
  21. 21.
    Nijhoff, F.W., Ragnisco, O., Kuznetsov, V.B.: Integrable time-discretization of the Ruijsenaars-Schneider model. Commun. Math. Phys. 176, 681–700 (1996). arXiv:hep-th/9412170 CrossRefMATHADSMathSciNetGoogle Scholar
  22. 22.
    Nijhoff, F.W., Kuznetsov, V.B., Sklyanin, E.K., Ragnisco, O.: Dynamical r-matrix for the elliptic Ruijsenaars-Schneider system. J. Phys. A 29, L333–L340 (1996). arXiv:solv-int/9603006 CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944) CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Pakuliak, S., Rubtsov, V., Silantyev, A.: The SOS model partition function and the elliptic weight functions. J. Phys. A 41, 295204 (2008). arXiv:0802.0195 [math.QA] CrossRefMathSciNetGoogle Scholar
  25. 25.
    Palmer, J.: Planar Ising correlations. In: Progress Mathematical Physics, vol. 49. Birkhäuser, Basel (2007) Google Scholar
  26. 26.
    Palmer, J., Hystad, G.: Spin matrix for the scaled periodic Ising model. J. Math. Phys. 51, 123301 (2010). arXiv:1008.0352 [nlin.SI] CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Palmer, J., Tracy, C.A.: Two-dimensional Ising correlations: convergence of the scaling limit. Adv. Appl. Math. 2, 329–388 (1981) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Rosengren, H.: An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137–155 (2009). arXiv:0801.1229 [math.CO] CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields V. Publ. RIMS, Kyoto Univ. 16, 531–584 (1980) CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Sklyanin, E.K.: Functional Bethe ansatz. In: Kupershmidt, B.A. (ed.) Integrable and Superintegrable Systems, pp. 8–33. World Scientific, Singapore (1990) CrossRefGoogle Scholar
  31. 31.
    Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russ. Math. Surv. 63, 405–472 (2008). arXiv:0805.3135 [math.CA] CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge Univ. Press, Cambridge (1962) MATHGoogle Scholar
  33. 33.
    Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952) CrossRefMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsKyivUkraine
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.Laboratoire de Mathématiques et Physique Théorique CNRS/UMR 6083Université de Tours, Parc de GrandmontToursFrance

Personalised recommendations