Journal of Statistical Physics

, Volume 142, Issue 4, pp 792–827 | Cite as

General Entropic Approximations for Canonical Systems Described by Kinetic Equations

  • V. Pavan


In this paper we extend the general construction of entropic approximation for kinetic operators modelling canonical systems. More precisely, this paper aims at pursuing to thermalized systems the works of Levermore, Schneider and Junk on moments problems relying on entropy minimization in order to construct BGK approximations and moments based equations.


Kinetic theory BGK operators Entropy minimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collisional processes in gases I: small amplitude processes in charged and in neutral one-component systems. Phys. Rev. 94, 511–525 (1954) MATHCrossRefADSGoogle Scholar
  2. 2.
    Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95(1–2), 113–170 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1988) MATHCrossRefGoogle Scholar
  4. 4.
    Hauck, C.D., Levermore, C.D., Tits, A.L.: Convex duality and entropy-based moment closures: characterizing degenerate densities. SIAM J. Control Optim. 47(4) (June 2008) Google Scholar
  5. 5.
    Junk, M.: Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93(5–6), 1143–1167 (1998) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Junk, M.: Maximum entropy for reduced moment problems. Models Methods Appl. Sci. 10, 1001–1025 (2000) MATHMathSciNetGoogle Scholar
  7. 7.
    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Mieussens, L.: Convergence of a discrete-velocity model for the Boltzmann-BGK equation. Comput. Math. Appl. 41, 83–96 (2001) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Muller, I.: Ruggeri, Rational Extended Thermodynamics, 2nd edn. Springer, Berlin (1998) CrossRefGoogle Scholar
  10. 10.
    Pavan, V.: J/ Chastanet, Gas/Solid heat transfers in gas flows under Klinkenberg conditions: comparison between the homogenization and the kinetic approaches. J. Porous Media (to be appeared) Google Scholar
  11. 11.
    Pavan, V.: Knudsen diffusion in rarefied porous media. Phys. Fluids (submitted) Google Scholar
  12. 12.
    Pavan, V., Oxarango, L.: A new momentum equation for gas flow in porous media: the Klinkenberg effect seen through the kinetic theory. J. Stat. Phys. 126(2), 355–389 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  14. 14.
    Schneider, J.: Entropic approximation in kinetic theory. Math. Model. Numer. Anal. 38(3) (May–June 2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.IUSTI DTF TeamPolytech MarseilleMarseilleFrance

Personalised recommendations