Advertisement

Journal of Statistical Physics

, Volume 140, Issue 3, pp 518–543 | Cite as

Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall

  • Tetsuro Tsuji
  • Kazuo Aoki
  • François Golse
Article

Abstract

A free-molecular gas contained in a static vessel with a uniform temperature is considered. The approach of the velocity distribution function of the gas molecules from a given initial distribution to the uniform equilibrium state at rest is investigated numerically under the diffuse reflection boundary condition. This relaxation is caused by the interaction of gas molecules with the vessel wall. It is shown that, for a spherical vessel, the velocity distribution function approaches the final uniform equilibrium distribution in such a way that their difference decreases in proportion to an inverse power of time. This is slower than the known result for a rarefied gas with molecular collisions.

Keywords

Free-molecular gas Approach to equilibrium Diffuse reflection Kinetic theory of gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desvillettes, L.: Convergence to equilibrium in large time for Boltzmann and B.G.K. equations. Arch. Ration. Mech. Anal. 110, 73–91 (1990) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I. J. Math. Kyoto Univ. 34, 391–427 (1994) MATHMathSciNetGoogle Scholar
  3. 3.
    Arkeryd, L., Nouri, A.: Boltzmann asymptotics with diffuse reflection boundary conditions. Monatshefte Math. 123, 285–298 (1997) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305. Elsevier, Amsterdam (2002) CrossRefGoogle Scholar
  5. 5.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159, 245–316 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Villani, C.: Convergence to equilibrium: Entropy production and hypocoercivity. In: Capitelli, M. (ed.) Rarefied Gas Dynamics, pp. 8–25. AIP, Melville (2005) Google Scholar
  7. 7.
    Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 969–998 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009) MathSciNetGoogle Scholar
  9. 9.
    Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. (2009). doi: 10.1007/s00205-009-0285-y Google Scholar
  10. 10.
    Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74, 97–109 (1980) MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Lebowitz, J.L., Frisch, H.L.: Model of nonequilibrium ensemble: Knudsen gas. Phys. Rev. 107, 917–923 (1957) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Arkeryd, L., Ianiro, N., Triolo, L.: The trend to a stationary state for the Lebowitz stick model. Math. Methods Appl. Sci. 16, 739–757 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Bose, C., Grzegorczyk, P., Illner, R.: Asymptotic behavior of one-dimensional discrete-velocity models in a slab. Arch. Ration. Mech. Anal. 127, 337–360 (1994) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yu, S.-H.: Stochastic formulation for the initial-boundary value problems of the Boltzmann equation. Arch. Ration. Mech. Anal. 192, 217–274 (2009) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Desvillettes, L., Salvarani, S.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848–858 (2009) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Callen, H.B.: Thermodynamics. Wiley, New York (1960). Chap. 6, Sect. 6.1 MATHGoogle Scholar
  18. 18.
    Feller, W.: On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971). Chap. XI Google Scholar
  20. 20.
    Babovsky, H.: On Knudsen flows within thin tubes. J. Stat. Phys. 44, 865–878 (1986) MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Babovsky, H., Bardos, C., Platkowski, T.: Diffusion approximation for a Knudsen gas in a thin domain with accommodation on the boundary. Asymptot. Anal. 3, 265–289 (1991) MathSciNetGoogle Scholar
  22. 22.
    Golse, F.: Anomalous diffusion limit for the Knudsen gas. Asymptot. Anal. 17, 1–12 (1998) MATHMathSciNetGoogle Scholar
  23. 23.
    Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. Math. Model. Numer. Anal. 42, 263–275 (2008) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and ScienceKyoto UniversityKyotoJapan
  2. 2.Department of Mechanical Engineering and Science and Advanced Research Institute of Fluid Science and EngineeringKyoto UniversityKyotoJapan
  3. 3.Centre de Mathématiques Laurent SchwartzÉcole PolytechniquePalaiseau cedexFrance

Personalised recommendations