Journal of Statistical Physics

, Volume 139, Issue 3, pp 466–477 | Cite as

Wave Localization Does not Affect the Breakdown of a Schrödinger-Type Amplifier Driven by the Square of a Gaussian Field

  • Philippe Mounaix
  • Pierre Collet


We study the divergence of the solution to a Schrödinger-type amplifier driven by the square of a Gaussian noise in presence of a random potential. We follow the same approach as Mounaix, Collet, and Lebowitz (MCL) in terms of a distributional formulation of the amplified field and the use of the Paley-Wiener theorem (Mounaix et al. in Commun. Math. Phys. 264:741–758, 2006, Erratum: ibid. 280:281–283, 2008). Our results show that the divergence is not affected by the random potential, in the sense that it occurs at exactly the same coupling constant as what was found by MCL without a potential. It follows a fortiori that the breakdown of the amplifier is not affected by the possible existence of a localized regime in the amplification free limit.


Gaussian Noise Wave Localization Random Potential Critical Coupling Zero Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mounaix, Ph., Collet, P., Lebowitz, J.L.: Propagation effects on the breakdown of a linear amplifier model: complex-mass Schrödinger equation driven by the square of a Gaussian field. Commun. Math. Phys. 264, 741–758 (2006). Erratum: Commun. Math. Phys. 280, 281–283 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Thouless, D.J.: Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974) CrossRefADSGoogle Scholar
  3. 3.
    Nagaoka, Y., Fukuyama, H. (eds.): Anderson Localization. Springer Series in Solid-State Sciences, vol. 39. Springer, Berlin (1982) Google Scholar
  4. 4.
    Lee, P.A., Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985) CrossRefADSGoogle Scholar
  5. 5.
    Ramakrishnan, T.V.: Electron localization. In: Souletie, J., Vannimenus, J., Stora, R. (eds.) Chance and Matter, Les Houches, Session XLVI. Elsevier, Amsterdam (1987) Google Scholar
  6. 6.
    Souillard, B.: Waves and electrons in inhomogeneous media. In: Souletie, J., Vannimenus, J., Stora, R. (eds.) Chance and Matter, Les Houches, Session XLVI. Elsevier, Amsterdam (1987) Google Scholar
  7. 7.
    John, S.: The localization of light and other classical waves in disordered media. Comments. Condens. Matter Phys. 14, 193 (1988) Google Scholar
  8. 8.
    Yajima, K.: Private communication (2004) Google Scholar
  9. 9.
    Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Methods of Modern Mathematical Physics, vol. 2. Academic Press, New York (1975) MATHGoogle Scholar
  10. 10.
    Conway, J.B.: Functions of One Complex Variable I. Graduate Texts in Mathematics, vol. 11. Springer, New York (1978) Google Scholar
  11. 11.
    Adler, J.: The Geometry of Random Fields. Wiley, New York (1981) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Centre de Physique Théorique, UMR 7644 du CNRSEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations