Advertisement

Journal of Statistical Physics

, Volume 139, Issue 3, pp 367–374 | Cite as

Exponential Rates of Convergence in the Ergodic Theorem: A Constructive Approach

  • G. G. Bosco
  • F. P. Machado
  • Thomas Logan Ritchie
Article

Abstract

We prove that, once an algorithm of perfect simulation for a stationary and ergodic random field F taking values in \(S^{\mathbb{Z}^{d}}\), S a bounded subset of R n , is provided, the speed of convergence in the mean ergodic theorem occurs exponentially fast for F. Applications from (non-equilibrium) statistical mechanics and interacting particle systems are presented.

Keywords

Exponential rates Ergodic theorem Random fields Perfect simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baum, L.E., Katz, M., Read, R.R.: Exponential convergence rates for the law of large numbers. Trans. Am. Math. Soc. 102, 187–199 (1962) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ferrari, P.A., Fernandez, R., Garcia, N.L.: Perfect simulation for interacting point processes, loss networks and Ising models. Stoch. Process. Appl. 102, 63–88 (2002) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Galves, A., Garcia, N.L., Löcherbach, E.: Perfect simulation and finitary coding for multicolor systems with interactions of infinite range. Preprint Google Scholar
  4. 4.
    Häggström, O., Steif, J.E.: Propp-Wilson algorithms and finitary codings for high noise Markov random fields. Comb. Probab. Comput. 9, 425–439 (2000) MATHCrossRefGoogle Scholar
  5. 5.
    Lebowitz, J.L., Schonmann, R.H.: Pseudo-free energies and large deviations for non Gibbsian FKG measures. Probab. Theory Relat. Fields 77, 49–64 (1988) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Olla, S.: Large deviations for Gibbs random fields. Probab. Theory Relat. Fields 77, 343–357 (1988) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ritchie, T.L.: Construction of the thermodynamic jamming limit for the parking process and other exclusion schemes on ℤd. J. Stat. Phys. 122(3), 381–398 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    van den Berg, J., Steif, J.E.: On the existence and non-existence of finitary codings for a class of random fields. Ann. Probab. 27, 1501–1522 (1999) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. G. Bosco
    • 1
  • F. P. Machado
    • 2
  • Thomas Logan Ritchie
    • 3
  1. 1.Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  3. 3.Universidade Federal do ABCSanto AndréBrazil

Personalised recommendations