Advertisement

Journal of Statistical Physics

, Volume 139, Issue 2, pp 219–251 | Cite as

Hydrodynamic Limit for a Boundary Driven Stochastic Lattice Gas Model with Many Conserved Quantities

  • Alexandre B. Simas
Article

Abstract

We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities.

Keywords

Hydrodynamic limit Hydrodynamic equation Markov processes Exclusion processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beltrán, J., Landim, C.: A lattice gas model for the incompressible Navier-Stokes equation. Ann. Inst. Henri Poincaré, Probab. Stat. 44, 886–914 Google Scholar
  2. 2.
    Benois, O., Kipnis, C., Landim, C.: Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stoch. Proc. Appl. 55, 65–89 (1995) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernardin, C.: Stationary nonequilibrium properties for a heat conduction model. Phys. Rev. E 78, 021134 (2008) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. 37, 611–643 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bertini, L., De Sole, A., Gabrielli, G., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp. 7, P07014 (2007) (electronic) CrossRefGoogle Scholar
  6. 6.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) MATHGoogle Scholar
  7. 7.
    Derrida, B.: Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. P07023 (2007) Google Scholar
  8. 8.
    Esposito, R., Marra, R., Yau, H.T.: Navier-Stokes equations for stochastic particle systems on the lattice. Commun. Math. Phys. 182, 395–456 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Eyink, G., Lebowitz, J.L., Spohn, H.: Hydrodynamics of stationary nonequilibrium states for some lattice gas models. Commun. Math. Phys. 132, 253–283 (1990) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Eyink, G., Lebowitz, J.L., Spohn, H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140, 119–131 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Farfan, J., Landim, C., Mourragui, M.: Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion. Preprint. 0903.5526
  12. 12.
    Farfan, J., Simas, A.B., Valentim, F.J.: Dynamical large deviation for a boundary driven stochastic lattice gas model with many conserved quantities. Preprint arXiv:0911.4425
  13. 13.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs (1964) MATHGoogle Scholar
  14. 14.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren Math. Wiss., vol. 320. Springer, Berlin (1999) MATHGoogle Scholar
  15. 15.
    Kipnis, C., Landim, C., Olla, S.: Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system. Ann. Inst. Henri Poincaré, Probabilités 31, 191–221 (1995) MATHMathSciNetGoogle Scholar
  16. 16.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Rhode Island (1968) Google Scholar
  17. 17.
    Landim, C., Olla, S., Volchan, S.B.: Driven tracer particle in one dimensional symmetric simple exclusion. Commun. Math. Phys. 192, 287–307 (1998) MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Landim, C., Mourragui, M., Sellami, S.: Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Theory Probab. Appl. 45, 604–623 (2001) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Oleinik, O.A., Kruzhkov, S.N.: Quasi-linear second order parabolic equations with many independent variables. Russ. Math. Surv. 16, 105–146 (1961) CrossRefGoogle Scholar
  20. 20.
    Quastel, J., Yau, H.T.: Lattice gases large deviations, and the incompressible Navier-Stokes equations. Ann. Math. 148, 51–108 (1998) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Stat. Phys. A, Math. Gen. 16, 4275–4291 (1983) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.IMPARio de JaneiroBrazil

Personalised recommendations