Journal of Statistical Physics

, Volume 141, Issue 3, pp 422–458 | Cite as

Scalings for a Ballistic Aggregation Equation

  • Miguel Escobedo
  • Stéphane Mischler


We consider a mean field type equation for ballistic aggregation of particles whose density function depends both on the mass and momentum of the particles. For the case of a constant aggregation rate we prove the existence of self-similar solutions and the convergence of more general solutions to them. We are able to estimate the large time decay of some moments of general solutions or to build some new classes of self-similar solutions for several classes of mass and/or momentum dependent rates.


Aggregation Ballistic Smoluchowski equation Self similar Mass Momentum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertoin, J.: Clustering statistics for sticky particles with Brownian initial velocity. J. Math. Pures Appl. 79, 173–194 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Bertoin, J.: Self-attracting poisson clouds in an expanding universe. Commun. Math. Phys. 232, 59–81 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bobylev, A.V., Illner, R.: Collision integrals for attractive potentials. J. Stat. Phys. 95, 633–649 (1999) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brilliantov, N.V., Bodrova, A.S., Krapivsky, P.L.: A model of ballistic aggregation and fragmentation. J.  Stat. Mech. P06011 (2009) Google Scholar
  5. 5.
    Brilliantov, N.V., Spahn, F.: Dust coagulation in equilibrium molecular gas. Math. Comput. Simul. 72, 93–97 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carnevale, G.F., Pomeau, Y., Young, W.R.: Statistics of Ballistic Agglomeration. Phys. Rev. Lett. 64, 2913–2916 (1990) CrossRefADSGoogle Scholar
  7. 7.
    Escobedo, M., Laurençot, Ph., Mischler, S.: On a kinetic equation for coalescing particles. Commun. Math. Phys. 246, 237–267 (2004) MATHCrossRefADSGoogle Scholar
  8. 8.
    Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 80, 471–515 (2001) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Escobedo, M., Mischler, S.: On self-similarity for the coagulation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 331–362 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Escobedo, M., Mischler, S., Ricard, M.R.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005) MATHCrossRefADSGoogle Scholar
  11. 11.
    Estrada, P.R., Cuzzi, J.N.: Solving the coagulation equation by the moments method. Astrophys. J. 682, 515–526 (2008) CrossRefADSGoogle Scholar
  12. 12.
    Fournier, N., Laurençot, Ph.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589–609 (2005) MATHCrossRefADSGoogle Scholar
  13. 13.
    Fournier, N., Mischler, S.: A Boltzmann equation for elastic, inelastic, and coalescing collisions. J. Math. Pures Appl. 84, 1173–1234 (2005) MATHMathSciNetGoogle Scholar
  14. 14.
    Illner, R.: Stellar dynamics and plasma physics with corrected potentials: Vlasov, Manev, Boltzmann, Smoluchowski. In: Hydrodynamic Limits and Related Topics, Toronto, ON, 1998. Fields Inst. Commun., vol. 27, pp. 95–108. Am. Math. Soc., Providence (2000) Google Scholar
  15. 15.
    Jiang, Y., Leyvraz, F.: Scaling theory for ballistic aggregation. J. Phys. A, Math. Gen. 26, L179–L186 (1993) CrossRefADSGoogle Scholar
  16. 16.
    Krapivsky, P.L., Ben-Naim, E.: Aggregation with multiple conservation laws. Phys. Rev. E 53, 291–298 (1996) CrossRefADSGoogle Scholar
  17. 17.
    Laurençot, Ph., Mischler, S.: On coalescence equations and related models. In: Modeling and Computational Methods for Kinetic Equations. Model. Simul. Sci. Eng. Technol., pp. 321–356. Birkhauser Boston, Boston (2004) Google Scholar
  18. 18.
    Leyvraz, F.: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383(2–3), 95–212 (2003) CrossRefADSGoogle Scholar
  19. 19.
    Lynden-Bell, D.: Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967) ADSGoogle Scholar
  20. 20.
    Mischler, S., Mouhot, C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 3, 287 (2009) MathSciNetGoogle Scholar
  21. 21.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9, 78–109 (1999) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Morfill, G., Röser, S., Tscharnuter, W., Völk, H.: The dynamics of dust in a collapsing protostellar cloud and its possible role in planet formation. Moon Planets 19, 211–220 (1978) CrossRefADSGoogle Scholar
  24. 24.
    Roquejoffre, J.M., Villedieu, Ph.: A kinetic model for droplet coalescence in dense sprays. Math. Models Methods Appl. Sci. 11, 867–882 (2001) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991) MATHGoogle Scholar
  26. 26.
    Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917) Google Scholar
  27. 27.
    Spahn, F., Albers, N., Sremčević, M., Thornton, C.: Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. Europhys. Lett. 67, 545–551 (2004) CrossRefADSGoogle Scholar
  28. 28.
    Trizac, E., Hansen, J.P.: Dynamic scaling behavior of ballistic coalescence. Phys. Rev. Lett. 74, 4114–4117 (1995) CrossRefADSGoogle Scholar
  29. 29.
    Trizac, E., Krapivsky, P.L.: Correlations in ballistic processes. Phys. Rev. Lett. (2003). doi: 10.1103/PhysRevLett.91.218302 MATHGoogle Scholar
  30. 30.
    Wetherill, G.: The Formation and Evolution of Planetary Systems. Cambridge University Press, Cambridge (1988) Google Scholar
  31. 31.
    Williams, F.A.: Spray combustion and atomization. Phys. Fluids 1, 541–545 (1958) MATHCrossRefADSGoogle Scholar
  32. 32.
    Wurm, G., Blum, J.: Experiments on preplanetary dust aggregation. Icarus 132, 125–136 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad del País VascoBilbaoSpain
  2. 2.Ceremade, UMR 7534Université ParisParis Cedex 16France

Personalised recommendations