Advertisement

Journal of Statistical Physics

, Volume 141, Issue 2, pp 242–263 | Cite as

Correlation Inequalities for Interacting Particle Systems with Duality

  • C. Giardinà
  • F. Redig
  • K. Vafayi
Article

Abstract

We prove a comparison inequality between a system of independent random walkers and a system of random walkers which either interact by attracting each other—a process which we call here the symmetric inclusion process (SIP)—or repel each other—a generalized version of the well-known symmetric exclusion process. As an application, new correlation inequalities are obtained for the SIP, as well as for some interacting diffusions which are used as models of heat conduction,—the so-called Brownian momentum process, and the Brownian energy process. These inequalities are counterparts of the inequalities (in the opposite direction) for the symmetric exclusion process, showing that the SIP is a natural bosonic analogue of the symmetric exclusion process, which is fermionic. Finally, we consider a boundary driven version of the SIP for which we prove duality and then obtain correlation inequalities.

Keywords

Exclusion process Duality Correlation inequalities Heat conduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andjel, E.: A correlation inequality for the symmetric exclusion process. Ann. Probab. 16, 717–721 (1988) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardin, C.: Superdiffusivity of asymmetric energy model in dimensions 1 and 2. J. Math. Phys. 49(10), 103301 (2008) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bernardin, C., Olla, S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121, 271–289 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech., Theory Exp. P07014n (2007) Google Scholar
  5. 5.
    Borcea, J., Brändén, P., Liggett, T.M.: Negative dependence and the geometry of polynomials. J. Am. Math. Soc. 22, 521–567 (2009) CrossRefGoogle Scholar
  6. 6.
    De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics, vol. 1501. Springer, Berlin (1991) MATHGoogle Scholar
  7. 7.
    Derrida, B., Lebowitz, J.L., Speer, E.R.: Entropy of open lattice systems. J. Stat. Phys. 126, 1083–1108 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Galves, A., Kipnis, C., Marchioro, C., Presutti, E.: Nonequilibrium measures which exhibit a temperature gradient: study of a model. Commun. Math. Phys. 81, 127–147 (1981) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Giardina, C., Kurchan, J.: The Fourier law in a momentum-conserving chain. J. Stat. Mech. P05009 (2005) Google Scholar
  10. 10.
    Giardina, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 033301 (2007) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Giardina, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009) MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Gobron, T., Saada, E.: Coupling, attractiveness and hydrodynamics for conservative particle systems. Preprint available on arxiv.org (2009) Google Scholar
  13. 13.
    Harris, T.E.: A correlation inequality for Markov processes in partially ordered state spaces. Ann. Probab. 5, 451–454 (1977) MATHCrossRefGoogle Scholar
  14. 14.
    Inglis, J., Neklyudov, M., Zegarlinski, B.: Ergodicity for infinite particle systems with locally conserved quantities. arXiv:1002.0282v2 (2010)
  15. 15.
    Liggett, T.M.: Negative correlations and particle systems. Markov Process. Relat. Fields 8, 547–564 (2002) MATHMathSciNetGoogle Scholar
  16. 16.
    Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics. Springer, Berlin (2005). Reprint of the 1985 original MATHGoogle Scholar
  17. 17.
    Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A 16, 4275–4291 (1983) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Modena and Reggio Emilia UniversityReggio EmiliaItaly
  2. 2.IMAPPUniversiteit NijmegenNijmegenThe Netherlands
  3. 3.Mathematisch Instituut Universiteit LeidenLeidenThe Netherlands

Personalised recommendations