Journal of Statistical Physics

, Volume 140, Issue 3, pp 494–503 | Cite as

An Accurate Multi-level Finite Difference Scheme for 1D Diffusion Equations Derived from the Lattice Boltzmann Method



An accurate and unconditionally stable explicit finite difference scheme for 1D diffusion equations is derived from the lattice Boltzmann method with rest particles. The system of the lattice Boltzmann equations for the distribution of the number of the fictitious particles is rewritten as a four-level explicit finite difference equation for the concentration of the diffused matter with two parameters. The consistency analysis of the four-level scheme shows that the two parameters which appear in the scheme, the relaxation parameter and the amount of rest particles, can be determined such that the scheme has the truncation error of fourth order. Numerical experiments demonstrate the fourth-order rate of convergence for various combinations of model parameters.


Lattice Boltzmann method Multi-level explicit scheme Accuracy Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sukop, M., Thorne, D.: Lattice Boltzmann Modeling. Springer-Verlag, Berlin (2006) Google Scholar
  2. 2.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001) MATHGoogle Scholar
  3. 3.
    Rasin, I., Succi, S., Miller, W.: A multi-relaxation lattice kinetic method for passive scalar diffusion. J. Comput. Phys. 206, 453–462 (2005) MATHCrossRefADSGoogle Scholar
  4. 4.
    Succi, S., et al.: An integer lattice realization of a Lax scheme for transport processes in multiple component fluid flows. J. Comput. Phys. 152, 493–516 (1999) MATHCrossRefADSGoogle Scholar
  5. 5.
    van der Sman, R.G.M., Ernst, M.H.: Diffusion lattice Boltzmann scheme on a orthorhombic lattice. J. Stat. Phys. 94(1/2), 203–217 (1999) MATHCrossRefGoogle Scholar
  6. 6.
    Ancona, M.G.: Fully-Lagrangian and lattice-Boltzmann methods for solving systems of conservation equations. J. Comput. Phys. 115, 107–120 (1994) MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Du Fort, E.C., Frankel, S.P.: Stability conditions in the numerical treatment of parabolic differential equations. Math. Tables Other Aids Comput. 7, 135–152 (1953) CrossRefGoogle Scholar
  8. 8.
    Suga, S.: Stability and accuracy of lattice Boltzmann schemes for anisotropic advection-diffusion equations. Int. J. Mod. Phys. C 20, 633–650 (2009) MATHCrossRefADSGoogle Scholar
  9. 9.
    Wolf-Gladrow, D.A.: A lattice Boltzmann equation for diffusion. J. Stat. Phys. 79(5/6), 1023–1032 (1995) MATHCrossRefADSGoogle Scholar
  10. 10.
    Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier Stokes equation. Europhys. Lett. 17(6), 479–484 (1992) MATHCrossRefADSGoogle Scholar
  11. 11.
    Thomas, J.W.: Numerical Partial Difference Equations: Finite Difference Methods. Springer-Verlag, New York (1995) MATHGoogle Scholar
  12. 12.
    Richtmyer, R.D., Difference, K.W. Morton: Methods for Initial-value Problems. Interscience Publishers, New York (1967) MATHGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985) MATHGoogle Scholar
  14. 14.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley & Sons, New York (1988) MATHGoogle Scholar
  15. 15.
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, vol. 1. Springer-Verlag, New York (1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.National Institute for Environmental StudiesTsukubaJapan

Personalised recommendations