Skip to main content
Log in

An Accurate Multi-level Finite Difference Scheme for 1D Diffusion Equations Derived from the Lattice Boltzmann Method

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An accurate and unconditionally stable explicit finite difference scheme for 1D diffusion equations is derived from the lattice Boltzmann method with rest particles. The system of the lattice Boltzmann equations for the distribution of the number of the fictitious particles is rewritten as a four-level explicit finite difference equation for the concentration of the diffused matter with two parameters. The consistency analysis of the four-level scheme shows that the two parameters which appear in the scheme, the relaxation parameter and the amount of rest particles, can be determined such that the scheme has the truncation error of fourth order. Numerical experiments demonstrate the fourth-order rate of convergence for various combinations of model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukop, M., Thorne, D.: Lattice Boltzmann Modeling. Springer-Verlag, Berlin (2006)

    Google Scholar 

  2. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  3. Rasin, I., Succi, S., Miller, W.: A multi-relaxation lattice kinetic method for passive scalar diffusion. J. Comput. Phys. 206, 453–462 (2005)

    Article  MATH  ADS  Google Scholar 

  4. Succi, S., et al.: An integer lattice realization of a Lax scheme for transport processes in multiple component fluid flows. J. Comput. Phys. 152, 493–516 (1999)

    Article  MATH  ADS  Google Scholar 

  5. van der Sman, R.G.M., Ernst, M.H.: Diffusion lattice Boltzmann scheme on a orthorhombic lattice. J. Stat. Phys. 94(1/2), 203–217 (1999)

    Article  MATH  Google Scholar 

  6. Ancona, M.G.: Fully-Lagrangian and lattice-Boltzmann methods for solving systems of conservation equations. J. Comput. Phys. 115, 107–120 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Du Fort, E.C., Frankel, S.P.: Stability conditions in the numerical treatment of parabolic differential equations. Math. Tables Other Aids Comput. 7, 135–152 (1953)

    Article  Google Scholar 

  8. Suga, S.: Stability and accuracy of lattice Boltzmann schemes for anisotropic advection-diffusion equations. Int. J. Mod. Phys. C 20, 633–650 (2009)

    Article  MATH  ADS  Google Scholar 

  9. Wolf-Gladrow, D.A.: A lattice Boltzmann equation for diffusion. J. Stat. Phys. 79(5/6), 1023–1032 (1995)

    Article  MATH  ADS  Google Scholar 

  10. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  ADS  Google Scholar 

  11. Thomas, J.W.: Numerical Partial Difference Equations: Finite Difference Methods. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  12. Richtmyer, R.D., Difference, K.W. Morton: Methods for Initial-value Problems. Interscience Publishers, New York (1967)

    MATH  Google Scholar 

  13. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    MATH  Google Scholar 

  14. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  15. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, vol. 1. Springer-Verlag, New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Suga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suga, S. An Accurate Multi-level Finite Difference Scheme for 1D Diffusion Equations Derived from the Lattice Boltzmann Method. J Stat Phys 140, 494–503 (2010). https://doi.org/10.1007/s10955-010-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0004-y

Keywords

Navigation