Journal of Statistical Physics

, Volume 138, Issue 6, pp 955–1009 | Cite as

Random Convex Hulls and Extreme Value Statistics

  • Satya N. Majumdar
  • Alain Comtet
  • Julien Randon-Furling


In this paper we study the statistical properties of convex hulls of N random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy’s formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of n independent random walks. In the continuum time limit this reduces to n independent planar Brownian trajectories for which we compute exactly, for all n, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. 103:140602, 2009].

Convex hull Brownian motion Random walks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964) MATHGoogle Scholar
  2. 2.
    Acedo, L., Yuste, S.B.: Multiparticle random walks. Recent Res. Dev. Stat. Phys. 2, 83–106 (2002) Google Scholar
  3. 3.
    Affentranger, F.: The expected volume of a random polytope in a ball. J. Microsc. 151, 277–287 (1988) Google Scholar
  4. 4.
    Agrawal, H., Dhar, D.: Probability distribution of the sizes of largest erased-loops in loop-erased random walks. Phys. Rev. E 65, 031108 (2002) ADSGoogle Scholar
  5. 5.
    Akl, S., Toussaint, G.: Efficient convex hull algorithms for pattern recognition applications. In: International Conference on Pattern Recognition, pp. 483–487 (1978) Google Scholar
  6. 6.
    Aldous, D., Fristedt, B., Griffin, P.S., Pruitt, W.E.: The number of extreme points in the convex hull of a random sample. J. Appl. Probab. 28, 287–304 (1991) MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ayari, S., Dubuc, S.: La formule de Cauchy sur la longueur d’une courbe. Can. Math. Bull. 40, 3–9 (1997) MATHMathSciNetGoogle Scholar
  8. 8.
    Bárány, I.: Stochastic Geometry. C.I.M.E., Lecture Notes Math., vol. 1892. Springer, Berlin (2006) Google Scholar
  9. 9.
    Bárány, I., Reitzner, M.: Random polytopes. Preprint (2008).
  10. 10.
    Bárány, I., Vu, V.: Central limit theorems for Gaussian polytopes. Ann. Probab. 35(4), 1593–1621 (2007) MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Barbier, E.: Note sur le problème de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl. 5, 273–286 (1860) Google Scholar
  12. 12.
    Bartumeus, F., da Luz, M., Viswanathan, G., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology (2005) Google Scholar
  13. 13.
    Baxter, G.: A combinatorial lemma for complex numbers. Ann. Math. Stat. 32(3), 901 (1961) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ben Naim, E., Krapivsky, P.L., Majumdar, S.N.: Extremal properties of random trees. Phys. Rev. E 64, R035101 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    Bena, I., Majumdar, S.N.: Universal extremal statistics in a freely expanding jepsen gas. Phys. Rev. E 75, 051103 (2007) ADSGoogle Scholar
  16. 16.
    Berg, H.: Random Walks in Biology. Princeton University Press, New York (1983) Google Scholar
  17. 17.
    Bhattacharya, B., Sen, S.: On a simple, practical, optimal, output-sensitive randomized planar convex hull algorithm. J. Algorithms 25, 173–193 (1997) MathSciNetGoogle Scholar
  18. 18.
    Biane, P., Letac, G.: The mean perimeter of some random plane convex sets generated by a Brownian motion. Preprint (2009). arXiv:0905.2256
  19. 19.
    Biroli, G., Bouchaud, J.P., Potters, M.: Extreme value problems in random matrix theory and other disordered systems. JSTAT (P07019) (2007) Google Scholar
  20. 20.
    Bouchaud, J.P., Mézard, M.: Universality classes for extreme value statistics. J. Phys. A., Math. Gen. 30, 7997–8015 (1997) MATHADSCrossRefGoogle Scholar
  21. 21.
    Boyle, S., Lourenço, W., da Silva, L., Smith, A.: Home-range estimates vary with sample size and methods. Folia Primatol. 80, 33–42 (2009) CrossRefGoogle Scholar
  22. 22.
    Bräker, H., Hsing, T.: On the area and perimeter of a random convex hull in a bounded convex set. Probab. Theory Relat. Fields, 517–550 (1998) Google Scholar
  23. 23.
    Bramson, M.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531–581 (1978) MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Brown, B., Resnick, S.I.: Extreme values of independent stochastic processes. J. Appl. Probab. 14(4), 732–739 (1977) MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Brozius, H.: Convergence in mean of some characteristics of the convex hull. Adv. Appl. Probab. 21, 526–542 (1989) MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Brozius, H., de Haan, J.: On limiting laws for the convex hull of a sample. J. Appl. Probab. 24, 852 (1987) MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Brunet, E., Derrida, B.: Statistics at the tip of a branching random walk and the delay of traveling waves. Europhys. Lett. 87, 60010 (2009) CrossRefADSGoogle Scholar
  28. 28.
    Buchta, C.: Zufallspolygone in konvexen Vielecken. J. Reine Angew. Math. 347, 212–220 (1983) MathSciNetGoogle Scholar
  29. 29.
    Buchta, C.: Zufällige Polyeder. Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1985) Google Scholar
  30. 30.
    Burdzy, K.: Brownian motion in cones. Ann. Probab. 13, 1006–1010 (1985) MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Burdzy, K., San Martin, J.: Curvature of the convex hull of planar Brownian motion near its minimum point. Stoch. Process. Appl. 33(1), 89–103 (1989) MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Burkhardt, T.W., Gyorgi, G., Moloney, N.R., Racz, Z.: Extreme statistics for time series: Distribution of the maximum relative to the initial value. Phys. Rev. E 76, 041119 (2007) MathSciNetADSGoogle Scholar
  33. 33.
    Cabo, J., Groeneboom, P.: Limit theorems for functionals of convex hulls. Probab. Theory Relat. Fields 100, 31–55 (1994) MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006) MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Carnal, H.: Die konvexe Hülle von n rotationssymmetrischverteilen Punkten. Z.  Wahrscheinlichkeitstheor. 15, 168–176 (1970) MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Carpentier, D., LeDoussal, P.: Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E 63, 026110 (2001) ADSGoogle Scholar
  37. 37.
    Cauchy, A.: La rectification des courbes. Mémoire de l’Académie des Sciences (1832) Google Scholar
  38. 38.
    Chassaing, P., Marckert, J.F., Yor, M.: A stochastically quasi-optimal search algorithm for the maximum of the simple random walk. Ann. Appl. Probab. 13(4), 1264–1295 (2003) MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Coffman, E.G., Flajolet, P., Flato, L., Hofro, M.: The maximum of random walk and its application to rectangle packing. Prob. Eng. Inf. Sci. 12, 373–386 (1998) MATHCrossRefGoogle Scholar
  40. 40.
    Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, London (2001) MATHGoogle Scholar
  41. 41.
    Comtet, A., Majumdar, S.N.: Precise asymptotics of a random walker’s maximum. J. Stat. Mech. (P06013) (2005) Google Scholar
  42. 42.
    Cranston, M., Hsu, P., March, P.: Smoothness of the convex hull of planar Brownian motion. Ann. Probab. 17(1), 144 (1989) MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Crofton, M.: On the theory of local probability, applied to straight lines at random in a plane. Trans. R. Soc. 158, 181–199 (1868) CrossRefGoogle Scholar
  44. 44.
    Daniels, H.E., Skyrme, T.H.R.: The maximum of a random walk whose mean path has a maximum. Adv. Appl. Probab. 17(1), 85–99 (1985) MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Davis, R., Mulrow, E., Resnick, S.: The convex hull of a random sample in ℝd. Commun. Stat. Stoch. Models 3(1), 1–27 (1987) MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Dean, D.S., Majumdar, S.N.: Extreme-value statistics of hierarchically correlated variables, deviation from Gumbel statistics and anomalous persistence. Phys. Rev. E 64, 046121 (2001) ADSGoogle Scholar
  47. 47.
    Dean, D.S., Majumdar, S.N.: Large deviations of extreme eigenvalues of random matrices. Phys. Rev. Lett. 97, 160201 (2006) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Dean, D.S., Majumdar, S.N.: Extreme value statistics of eigenvalues of Gaussian random matrices. Phys. Rev. E 77, 041108 (2008) MathSciNetADSGoogle Scholar
  49. 49.
    Derrida, B.: Random-energy model—an exactly solvable model of disordered-systems. Phys. Rev. B 24, 2613–2626 (1981) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and travelling waves. J. Stat. Phys. 51, 817–840 (1988) MATHMathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Devroye, L.: How to reduce the average complexity of convex hull finding algorithms. Comput. Math. Appl. 7, 299–308 (1981) MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Dobrushin, R.L., Kotecká, R., Shlosman, S.: Wulff Construction: a Global Shape from Local Interaction. Translations of Mathematical Monographs. American Mathematical Society, Providence (1992) MATHGoogle Scholar
  53. 53.
    Eddy, W.: A new convex hull algorithm for planar sets. ACM Trans. Math. Softw. 3(4), 398–403 (1977) MATHCrossRefGoogle Scholar
  54. 54.
    Eddy, W.: The distribution of the convex hull of a Gaussian sample. J. Appl. Probab. 17, 686–695 (1980) MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Eddy, W., Gale, J.: The convex hull of a spherically symmetric sample. Adv. Appl. Probab. 13, 751–763 (1981) MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Edelstein-Keshet, L.: Mathematical Models in Biology. Random House, New York (1988) MATHGoogle Scholar
  57. 57.
    Efron, B.: The convex hull of a random set of points. Biometrika 52(3–4), 331 (1965) MATHMathSciNetGoogle Scholar
  58. 58.
    El Bachir, M.: L’enveloppe convexe du mouvement brownien. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (1983) Google Scholar
  59. 59.
    Evans, M.R., Majumdar, S.N.: Condensation and extreme value statistics. JSTAT (P05004) (2008) Google Scholar
  60. 60.
    Evans, S.N.: On the Hausdorff dimension of Brownian cone points. Math. Proc. Camb. Philos. Soc. 98, 343–353 (1985) MATHCrossRefGoogle Scholar
  61. 61.
    Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968) MATHGoogle Scholar
  62. 62.
    Finch, S., Hueter, I.: Random convex hulls: a variance revisited. Adv. Appl. Probab. 36(4), 981–986 (1994) MathSciNetCrossRefGoogle Scholar
  63. 63.
    Fyodorov, Y.V., Bouchaud, J.P.: Freezing and extreme value statistics in a random energy model with logarithmically correlated potential. J. Phys. A., Math. Theor. 41, 372001 (2008) MathSciNetCrossRefGoogle Scholar
  64. 64.
    Fyodorov, Y.V., LeDoussal, P., Rosso, A.: Statistical mechanics of logarithmic rem: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields. JSTAT (P10005) (2009) Google Scholar
  65. 65.
    Garcia-Garcia, R., Rosso, A., Schehr, G.: The longest excursion of fractional Brownian motion: numerical evidence of non-Markovian effects. arXiv:0911:1897 (2009)
  66. 66.
    Geffroy, J.: Contribution à la théorie des valeurs extrêmes. II. Publ. Inst. Stat. Univ. Paris 7(8), 3–65 (1959) MathSciNetGoogle Scholar
  67. 67.
    Geffroy, J.: Localisation asymptotique du polyèdre d’appui d’un échantillon Laplacien à k dimensions. Publ. Inst. Stat. Univ. Paris 10, 213–228 (1961) MATHMathSciNetGoogle Scholar
  68. 68.
    Giuggioli, L., Abramson, G., Kenkre, V.M., Parmenter, R.R., Yates, T.L.: Theory of home range estimation from displacement measurements of animal populations. J. Theor. Biol. 240, 126–135 (2006) MathSciNetCrossRefGoogle Scholar
  69. 69.
    Gnedenko, B.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44(3), 423–453 (1943) MathSciNetCrossRefGoogle Scholar
  70. 70.
    Godrèche, C., Luck, J.M.: A record-driven growth process. JSTAT (P11006) (2008) Google Scholar
  71. 71.
    Godrèche, C., Majumdar, S.N., Schehr, G.: The longest excursion of stochastic processes in nonequilibrium systems. Phys. Rev. Lett. 102, 240602 (2009) ADSCrossRefGoogle Scholar
  72. 72.
    Goldman, A.: Le spectre de certaines mosaïques poissoniennes du plan et l’enveloppe convexe du pont brownien. Prob. Theor. Relat. Fields 105, 57–83 (1996) MATHCrossRefGoogle Scholar
  73. 73.
    Goldman, A.: Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. C. R. Acad. Sci. Paris 326, 233–237 (1998) MATHADSGoogle Scholar
  74. 74.
    Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972) MATHCrossRefGoogle Scholar
  75. 75.
    Groeneboom, P.: Limit theorems for convex hulls. Probab. Theory Relat. Fields 79, 327–368 (1988) MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Gumbel, E.: Les valeurs extrêmes des distributions statistiques. Ann. Inst. Henri Poincaré 5(2), 115–158 (1935) MATHMathSciNetGoogle Scholar
  77. 77.
    Gumbel, E.: Statistics of Extremes. Columbia University Press, New York (1958) MATHGoogle Scholar
  78. 78.
    Gyorgi, G., Holdsworth, P.C.W., Portelli, B., Racz, Z.: Statistics of extremal intensities for Gaussian interfaces. Phys. Rev. E 68, 056116 (2003) ADSGoogle Scholar
  79. 79.
    Gyorgi, G., Moloney, N.R., Ozogany, K., Racz, Z.: Maximal height statistics for 1/f α signals. Phys. Rev. E 75, 021123 (2007) MathSciNetADSGoogle Scholar
  80. 80.
    Haushofer, J., Bake, C.I., Livingstone, M.S., Kanwisher, N.: Privileged coding of convex shapes in human object-selective cortex. J. Neurophysiol. 100, 753–762 (2008) CrossRefGoogle Scholar
  81. 81.
    Hilhorst, H.J., Calka, P., Schehr, G.: Sylvester’s question and the random acceleration process. J. Stat. Mech., Theory Exp. (P10010) (2008) Google Scholar
  82. 82.
    Hsing, T.: On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4, 478–493 (1994) MATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2, 18–21 (1973) MATHCrossRefGoogle Scholar
  84. 84.
    Jewell, N., Romano, J.: Coverage problems and random convex hulls. J. Appl. Probab. 19, 546 (1982) MATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) MATHMathSciNetADSCrossRefGoogle Scholar
  86. 86.
    Kearney, M.J., Majumdar, S.N.: On the area under a continuous time Brownian motion till its first-passage time. J. Phys. A, Math. Gen. 38, 4097–4104 (2005) MATHMathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Khoshnevisan, D.: Moment inequalities for functionals of the Brownian convex hull. Ann. Probab. 20(2), 627 (1992) MATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM J. Comput. 15(1), 287–299 (1986) MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Krapivsky, P.L., Majumdar, S.N.: Traveling waves, front selection, and exact nontrivial exponents in a random fragmentation problem. Phys. Rev. Lett. 85, 5492 (2000) ADSCrossRefGoogle Scholar
  90. 90.
    Krug, J.: Records in a changing world. JSTAT (P07001) (2007) Google Scholar
  91. 91.
    Krug, J., Jain, K.: Breaking records in a evolutionary race. Physica A 358, 1–9 (2005) ADSCrossRefGoogle Scholar
  92. 92.
    Lakshminarayan, A., Tomsovic, S., Bohigas, O., Majumdar, S.N.: Extreme statistics of complex random and quantum chaotic states. Phys. Rev. Lett. 100, 044103 (2008) ADSCrossRefGoogle Scholar
  93. 93.
    Larralde, H., Trunfio, P., Havlin, S., Stanley, H.E., Weiss, G.H.: Number of distinct sites visited by n random walkers. Phys. Rev. A 45(10), 7128–7139 (1992) ADSCrossRefGoogle Scholar
  94. 94.
    Larralde, H., Trunfio, P., Havlin, S., Stanley, H.E., Weiss, G.H.: Territory covered by N diffusing particles. Nature 355, 423–426 (1992) ADSCrossRefGoogle Scholar
  95. 95.
    Le Gall, J.F.: Mouvement brownien, cônes et processus stables. Probab. Theory Relat. Fields 76, 587–627 (1987) MATHADSCrossRefGoogle Scholar
  96. 96.
    LeDoussal, P., Monthus, C.: Exact solutions for the statistics of extrema of some random 1d landscapes, applications to the equilibrium and the dynamics of the toy model. Physica A 317, 140–198 (2003) MathSciNetADSCrossRefGoogle Scholar
  97. 97.
    LeDoussal, P., Wiese, K.J.: Driven particle in a random landscape: disorder correlator, avalanche distribution and extreme value statistics of records. Phys. Rev. E 79, 051105 (2009) MathSciNetADSGoogle Scholar
  98. 98.
    Letac, G.: Expected perimeter length. Am. Math. Mon. 85, 686 (1978) MathSciNetGoogle Scholar
  99. 99.
    Letac, G.: An explicit calculation of the mean of the perimeter of the convex hull of a plane random walk. J. Theor. Prob. 6(2), 385 (1993) MATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    Lévy, P.: Sur certains processus stochastiques homogènes. Comput. Math. 7, 283–339 (1939) MATHGoogle Scholar
  101. 101.
    Lévy, P.: Processus stochastiques et mouvement brownien. Gauthiers-Villars, Paris (1948) MATHGoogle Scholar
  102. 102.
    Lévy, P.: Le caractère universel de la courbe du mouvement brownien et la loi du logarithme itéré. Circ. Mat. Palermo Ser. 2.4, 337–366 (1955) CrossRefGoogle Scholar
  103. 103.
    Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2075 (2005) MathSciNetGoogle Scholar
  104. 104.
    Majumdar, S.N., Bohigas, O., Lakshminarayan, A.: Exact minimum eigenvalue distribution of an entangled random pure state. J. Stat. Phys. 131, 33–49 (2008) MATHMathSciNetADSCrossRefGoogle Scholar
  105. 105.
    Majumdar, S.N., Comtet, A.: Exact maximal height distribution of fluctuating interfaces. Phys. Rev. Lett. 92, 225501 (2004) ADSCrossRefGoogle Scholar
  106. 106.
    Majumdar, S.N., Comtet, A.: Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119, 777–826 (2005) MATHMathSciNetADSCrossRefGoogle Scholar
  107. 107.
    Majumdar, S.N., Comtet, A., Ziff, R.M.: Unified solution of the expected maximum of a random walk and the discrete flux to a spherical trap. J. Stat. Phys. 122, 833–856 (2006) MATHMathSciNetADSCrossRefGoogle Scholar
  108. 108.
    Majumdar, S.N., Krapivsky, P.L.: Extremal paths on a random Cayley tree. Phys. Rev. E. 62, 7735 (2000) ADSCrossRefGoogle Scholar
  109. 109.
    Majumdar, S.N., Krapivsky, P.L.: Extreme value statistics and traveling fronts: an application to computer science. Phys. Rev. E 65, 036127 (2002) ADSGoogle Scholar
  110. 110.
    Majumdar, S.N., Krapivsky, P.L.: Extreme value statistics and traveling fronts: various applications. Physica A, Stat. Mech. Appl. 318(1–2), 161–170 (2003) MATHMathSciNetADSCrossRefGoogle Scholar
  111. 111.
    Majumdar, S.N., Mallick, K., Sabhapandit, S.: Statistical properties of the final state in one-dimensional ballistic aggregation. Phys. Rev. E 79, 021109 (2009) MathSciNetADSGoogle Scholar
  112. 112.
    Majumdar, S.N., Nechaev, S.K.: Exact asymptotic results for the Bernoulli matching model of sequence alignment. Phys. Rev. E 72, 020901 (2005) MathSciNetADSGoogle Scholar
  113. 113.
    Majumdar, S.N., Randon-Furling, J., Kearney, M.J., Yor, M.: On the time to reach maximum for a variety of constrained Brownian motions. J. Phys. A, Math. Theor. 41, 365005 (2008) MathSciNetCrossRefGoogle Scholar
  114. 114.
    Majumdar, S.N., Vergassola, M.: Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices. Phys. Rev. Lett. 102, 060601 (2009) ADSCrossRefGoogle Scholar
  115. 115.
    Majumdar, S.N., Ziff, R.M.: Universal record statistics of random walks and levy flights. Phys. Rev. Lett. 101, 050601 (2008) MathSciNetADSCrossRefGoogle Scholar
  116. 116.
    Mayer, M., Molchanov, I.: Limit theorems for the diameter of a random sample in the unit ball. Extremes 10, 129–150 (2007) MATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1976) MathSciNetCrossRefGoogle Scholar
  118. 118.
    Meier, R., Ackermann, F., Herrmann, G., Posch, S., Sagerer, G.: Segmentation of molecular surfaces based on their convex hull. In: International Conference on Image Processing (ICIP’95), vol. 3, p. 3552 (1995) Google Scholar
  119. 119.
    Murphy, D., Noon, B.: Integrating scientific methods with habitat conservation planning: reserve design for northern spotted owls. Ecol. Appl. 2, 3–17 (1992) CrossRefGoogle Scholar
  120. 120.
    Nadal, C., Majumdar, S.N.: Non-intersecting Brownian interfaces and Wishart random matrices. Phys. Rev. E 79, 061117 (2009) MathSciNetADSGoogle Scholar
  121. 121.
    Odlyzko, A.M.: Search for the maximum of a random walk. Random Struct. Algorithms 6, 275–295 (1995) MATHMathSciNetCrossRefGoogle Scholar
  122. 122.
    Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Commun. ACM 20(2), 87–93 (1977) MATHMathSciNetCrossRefGoogle Scholar
  123. 123.
    Rambeau, J., Schehr, G.: Maximum relative height of one-dimensional interfaces: from Rayleigh to Airy distribution. JSTAT (P09004) (2009) Google Scholar
  124. 124.
    Randon-Furling, J., Majumdar, S.N.: Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time. J. Stat. Mech. (P10008) (2007) Google Scholar
  125. 125.
    Randon-Furling, J., Majumdar, S.N., Comtet, A.: Convex hull of N planar Brownian motions: exact results and an application to ecology. Phys. Rev. Lett. 103, 140602 (2009) CrossRefMathSciNetADSGoogle Scholar
  126. 126.
    Raychaudhuri, S., Cranston, M., Przybyla, C., Shapir, Y.: Maximal height scaling of kinetically growing surfaces. Phys. Rev. Lett. 87, 136101 (2001) ADSCrossRefGoogle Scholar
  127. 127.
    Raynaud, H.: Sur le comportement asymptotique de l’enveloppe convexe d’un nuage de points tirés au hasard dans ℝn. C. R. Acad. Sci. 261, 627–629 (1965) MATHMathSciNetGoogle Scholar
  128. 128.
    Raynaud, H.: Sur l’enveloppe convexe des nuages de points aléatoires dans ℝn. J. Appl. Probab. 7(1), 35–48 (1970) MATHMathSciNetCrossRefGoogle Scholar
  129. 129.
    Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003) MATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    Reitzner, M.: Central limit theorems for random polytopes. Probab. Theory Relat. Fields 133, 483–507 (2005) MATHMathSciNetCrossRefGoogle Scholar
  131. 131.
    Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005) MATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. 2, 75–84 (1963) MATHCrossRefGoogle Scholar
  133. 133.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. 3, 138–147 (1964) MATHCrossRefGoogle Scholar
  134. 134.
    Rossing, T.D. (ed.): Handbook of Acoustics. Springer, Berlin (2007) Google Scholar
  135. 135.
    Sabhapandit, S.: Statistical properties of a single-file diffusion front. J. Stat. Mech. (L05002) (2007) Google Scholar
  136. 136.
    Sabhapandit, S., Majumdar, S.N.: Density of near-extreme events. Phys. Rev. Lett. 98, 140201 (2007) ADSCrossRefGoogle Scholar
  137. 137.
    Sabhapandit, S., Majumdar, S.N., Redner, S.: Crowding at the front of marathon packs. J. Stat. Mech. (L03001) (2008) Google Scholar
  138. 138.
    Santaló, L.: Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1976) MATHGoogle Scholar
  139. 139.
    Schehr, G., LeDoussal, P.: Extreme value statistics from the real space renormalization group: Brownian motion, Bessel processes and continuous time random walks (2009). arXiv:0910:4913
  140. 140.
    Schehr, G., Majumdar, S.N.: Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models. Phys. Rev. E 73, 056103 (2006) ADSGoogle Scholar
  141. 141.
    Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of p vicious walkers. Phys. Rev. Lett. 101, 150601 (2008) MathSciNetADSCrossRefGoogle Scholar
  142. 142.
    Schneider, R.: Random approximation of convex sets. J. Microsc. 151, 211 (1988) Google Scholar
  143. 143.
    Seidel, R.: Convex hull computations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 361–375. CRC Press, Boca Raton (1997) Google Scholar
  144. 144.
    Shimura, M.: A limit theorem for conditional random walk. Nagoya Math. J. 95, 105–116 (1984) MATHMathSciNetGoogle Scholar
  145. 145.
    Shimura, M.: Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ. 13, 433–443 (1985) MathSciNetGoogle Scholar
  146. 146.
    Sirakov, N.M.: A new active convex hull model for image regions. J. Math. Imaging Vis. 26(3), 309–325 (2006) MathSciNetCrossRefGoogle Scholar
  147. 147.
    Sire, C.: Probability distribution of the maximum of a smooth temporal signal. Phys. Rev. Lett. 98, 020601 (2007) ADSCrossRefGoogle Scholar
  148. 148.
    Sire, C.: Contest based on a directed polymer in a random medium. Phys. Rev. E 78, 061106 (2008) MathSciNetADSGoogle Scholar
  149. 149.
    Sire, C., Majumdar, S.N., Dean, D.S.: Exact solution of a model of time-dependent evolutionary dynamics in a rugged fitness landscape. JSTAT (L07001) (2006) Google Scholar
  150. 150.
    Snyder, T., Steele, J.: Convex hulls of random walks. Proc. Am. Math. Soc. 117(4), 1165 (1993) MATHMathSciNetCrossRefGoogle Scholar
  151. 151.
    Spitzer, F., Widom, H.: The circumference of a convex polygon. Proc. Am. Math. Soc. 12, 506–509 (1961) MATHMathSciNetCrossRefGoogle Scholar
  152. 152.
    Takács, L.: Expected perimeter length. Am. Math. Mon. 87, 142 (1980) CrossRefGoogle Scholar
  153. 153.
    Toussaint, G.: A historical note on convex hull finding algorithms. Pattern Recognit. Lett. 3, 21–28 (1985) ADSCrossRefGoogle Scholar
  154. 154.
    Tracy, C., Widom, H.: Level-spacing distributions and the airy kernel. Commun. Math. Phys. 159, 151–174 (1994) MATHMathSciNetADSCrossRefGoogle Scholar
  155. 155.
    Valentine, F.: Convex Sets. McGraw-Hill, New York (1964) MATHGoogle Scholar
  156. 156.
    Vivo, P., Majumdar, S.N., Bohigas, O.: Large deviations of the maximum eigenvalue in Wishart random matrices. J. Phys. A, Math. Theor. 40, 4317–4337 (2007) MATHMathSciNetADSCrossRefGoogle Scholar
  157. 157.
    Vu, V.: Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207, 221–243 (2006) MATHMathSciNetCrossRefGoogle Scholar
  158. 158.
    Weil, W., Wieacker, J.A.: Handbook of Convex Geometry, vol. B, pp. 1391–1438. North Holland, Amsterdam (1993) Google Scholar
  159. 159.
    Wenger, R.: Randomized quick hull. Algorithmica 17, 322–329 (1997) MATHMathSciNetCrossRefGoogle Scholar
  160. 160.
    Worton, B.J.: A convex hull-based estimator of home-range size. Biometrics 51(4), 1206–1215 (1995) MATHCrossRefGoogle Scholar
  161. 161.
    Yaacoub, F., Hamam, Y., Abche, A., Fares, C.: Convex hull in medical simulations: a new hybrid approach. In: 32nd Annual Conference of IEEE Industrial Electronics Society, IECON’06, pp. 3308–3313 (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Satya N. Majumdar
    • 1
  • Alain Comtet
    • 1
    • 2
  • Julien Randon-Furling
    • 1
  1. 1.LPTMSUniv. Paris-Sud 11Orsay CedexFrance
  2. 2.Université Pierre et Marie Curie-Paris 6Paris Cedex 05France

Personalised recommendations