Journal of Statistical Physics

, 137:459 | Cite as

Mean Field Frozen Percolation



We define a modification of the Erdős-Rényi random graph process which can be regarded as the mean field frozen percolation process. We describe the behavior of the process using differential equations and investigate their solutions in order to show the self-organized critical and extremum properties of the critical frozen percolation model. We prove two limit theorems about the distribution of the size of the component of a typical frozen vertex.

Frozen percolation Random graphs Smoluchowski coagulation equations 


  1. 1.
    Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aldous, D.J.: The percolation process on a tree where infinite clusters are frozen. Math. Proc. Camb. Philos. Soc. 128(3), 465–477 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69(11), 1629–1632 (1992) CrossRefADSGoogle Scholar
  4. 4.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971) MATHGoogle Scholar
  5. 5.
    Lushnikov, A.: Some new aspects of coagulation theory. Izv. Akad. Nauk. SSSR, Ser. Fiz. Atmos. I Okeana 14(10), 738–743 (1978) Google Scholar
  6. 6.
    Ráth, B., Tóth, B.: Erdős-Rényi random graphs + forest fires = self-organized criticality. Electron. J. Probab. 14, 1290–1327 (2009) MathSciNetGoogle Scholar
  7. 7.
    van den Berg, J., Tóth, B.: A signal-recovery system: asymptotic properties, and construction of an infinite-volume process. Stoch. Process. Appl. 96(2), 177–190 (2001) MATHCrossRefGoogle Scholar
  8. 8.
    Ziff, R.M., Ernst, M.H., Hendriks, E.M.: Kinetics of gelation and universality. J. Phys. A, Math. Gen. 16, 2293–2320 (1983) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of MathematicsBudapest University of Technology (BME)BudapestHungary

Personalised recommendations