Advertisement

Journal of Statistical Physics

, 137:1014 | Cite as

The Fisher-Hartwig Formula and Entanglement Entropy

  • A. R. Its
  • V. E. Korepin
Article

Abstract

Toeplitz matrices have applications to different problems of statistical mechanics. Recently it was used for calculation of entanglement entropy in spin chains. In the paper we review these recent developments. We use the Fisher-Hartwig formula, as well as the recent results concerning the asymptotics of the block Toeplitz determinants, to calculate entanglement entropy of large block of spins in the ground state of XY spin chain.

Keywords

Toeplitz determinant Fisher-Hartwig formula Entanglement Spin chain 

References

  1. 1.
    Abraham, D.B., Barouch, E., Gallavotti, G., Martin-Löf, A.: Thermalization of a magnetic impurity in the isotropic XY model. Phys. Rev. Lett. 25, 1449–1450 (1970) CrossRefADSGoogle Scholar
  2. 2.
    Abraham, D.B., Barouch, E., Gallavotti, G., Martin-Löf, A.: Stud. Appl. Math. 50, 121 (1971) Google Scholar
  3. 3.
    Abraham, D.B., Barouch, E., Gallavotti, G., Martin-Löf, A.: Stud. Appl. Math. 51, 211 (1972) Google Scholar
  4. 4.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  5. 5.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model, II: spin-correlation functions. Phys. Rev. A 3, 786–804 (1971) CrossRefADSGoogle Scholar
  7. 7.
    Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model, I. Phys. Rev. A 2, 1075–1092 (1970) CrossRefADSGoogle Scholar
  8. 8.
    Basor, E.: Asymptotic formulas for Toeplitz determinants. Trans. Am. Math. Soc. 239, 33–65 (1978) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Basor, E.: A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28(6), 975–983 (1979) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Basor, E.L., Ehrhardt, T.: Asymptotics of block Toeplitz determinants and the classical dimer model. Commun. Math. Phys. 274, 427–455 (2007). arXiv:math-ph/0607065v1 MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Basor, E.L., Tracy, C.A.: The Fisher-Hartwig conjecture and generalizations. Phys. A 177, 167–173 (1991) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear evolution equations. In: Springer Series in Nonlinear Dynamics. Springer, Berlin (1994) Google Scholar
  13. 13.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996). arXiv:quant-ph/9511030v1 CrossRefADSGoogle Scholar
  14. 14.
    Bogoliubov, N.M., Izergin, A.G., Korepin, V.E.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar
  15. 15.
    Böttcher, A.: On the determinant formulas by Borodin, Okounkov, Baik, Deift, and Rains. Oper. Theory Adv. Appl. 135, 91–99 (2002). arXiv:math/0101008v1 Google Scholar
  16. 16.
    Böttcher, A., Silbermann, B.: Toeplitz matrices and determinants with Fisher-Hartwig symbols. J. Funct. Anal. 63, 178–214 (1985) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Springer, Berlin (1990) MATHGoogle Scholar
  18. 18.
    Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. P06002 (2004). arXiv:hep-th/0405152v3
  19. 19.
    Deift, P.: Integrable operators, differential operators and spectral theory. In: Am. Math. Soc. Transl. Ser., vol. 2, p. 189. Am. Math. Soc., Providence (1999) Google Scholar
  20. 20.
    Deift, P.A., Its, A.R., Krasovsky, I.: Asymptotics of Toeplitz, Hankel, and Toeplitz + Hankel determinants with Fisher-Hartwig singularities. arXiv:0905.0443v1
  21. 21.
    Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics for orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52, 1491–1552 (1999) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problem. Ann. Math. 137, 295–368 (1993) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Deift, P.A., Zhou, X.: Singular limits of dispersive waves. In: Ercolani, N.M., Gabitov, I.R., et al. (eds.) NATO ASI Series B Physics, vol. 320. Plenum, New York (1994) Google Scholar
  24. 24.
    Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc. 26, 376–385 (1930) MATHCrossRefGoogle Scholar
  25. 25.
    Ehrhardt, T.: A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities. Oper. Theory Adv. Appl. 124, 217–241 (2001) MathSciNetGoogle Scholar
  26. 26.
    Fisher, M.E., Hartwig, R.E.: Toeplitz determinants: Some applications, theorems, and conjectures. Adv. Chem. Phys. 15, 333–353 (1968) CrossRefGoogle Scholar
  27. 27.
    Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147, 395–430 (1992) MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Franchini, F., Its, A.R., Korepin, V.E.: Rényi entropy of the XY spin chain. J. Phys. A 41, 025302 (2008). arXiv:0707.2534v4 CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Gessel, I.M.: Symmetric functions and P-recursiveness. J. Comb. Theory, Ser. A 53, 257–285 (1990) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Harnad, J., Its, A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226, 497–530 (2002). arXiv:solv-int/9706002v1 MATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Its, A.R., Jin, B.-Q., Korepin, V.E.: Entanglement in the XY spin chain. J. Phys. A 38, 2975–2990 (2005). arXiv:quant-ph/0409027v4 MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Its, A.R., Jin, B.-Q., Korepin, V.E.: Entropy of XY spin chain and block Toeplitz determinants. In: Bender, I., Kreimer D. (eds.) Fields Institute Communications, Universality and Renormalization, vol. 50, pp. 151–183 (2007). arXiv:quant-ph/0606178v3
  33. 33.
    Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 4, 1003–1037 (1990) MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. In: Barber, M.N., Pearce, P.A. (eds.) Proc. on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, Canberra, pp. 303–338. World Scientific, Singapore (1990) Google Scholar
  35. 35.
    Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Temperature correlations of quantum spins. Phys. Rev. Lett. 70, 1704 (1993). http://insti.physics.sunysb.edu/~korepin/ttc.pdf CrossRefADSGoogle Scholar
  36. 36.
    Its, A.R., Mezzadri, F., Mo, M.Y.: Entanglement entropy in quantum spin chains with finite range interaction. Commun. Math. Phys. 284, 117–185 (2008). arXiv:0708.0161v2 MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Jin, B.Q., Korepin, V.E.: Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture. J. Stat. Phys. 116, 79 (2004). arXiv:quant-ph/0304108v4 MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Kapitonov, V.S., Pronko, A.G.: Time-dependent correlators of local spins of the one-dimensional XY Heisenberg chain. In: Vopr. Kvant. Teor. Polya i Stat. Fiz., vol. 16. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., vol. 269, pp. 219–261. POMI, St. Petersburg (2000) (in Russian). English translation in: J. Math. Sci. (N.Y.) 115(1), 2009–2032 (2003). (Reviewer: Anatoliy Yu. Zakharov) 82B20 (82B23) Google Scholar
  39. 39.
    Keating, J.P., Mezzadri, F.: Random matrix theory and entanglement in quantum spin chains. Commun. Math. Phys. 252, 543–579 (2004). arXiv:quant-ph/0407047v2 MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Korepin, V.E.: Universality of entropy scaling in 1D gap-less models. Phys. Rev. Lett. 92, 096402 (2004). arXiv:cond-mat/0311056v4 CrossRefADSGoogle Scholar
  41. 41.
    Krasovsky, I.V.: Asymptotics for Toeplitz determinants on a circular arc. arXiv:math/0401256v2
  42. 42.
    Krasovsky, I.V.: Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle. Int. Math. Res. Not. 2004, 1249–1272 (2004). arXiv:math/0401258v2 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Latorre, J.I., Rico, E., Vidal, G.: Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48–92 (2004). arXiv:quant-ph/0304098v4 MATHMathSciNetGoogle Scholar
  44. 44.
    Lenard, A.: Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons. J. Math. Phys. 5, 930–943 (1964) CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Lenard, A.: Some remarks on large Toeplitz determinants. Pac. J. Math. 42, 137–145 (1972) MATHMathSciNetGoogle Scholar
  46. 46.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961) MATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Martínez-Finkelshtein, A., McLaughlin, K.T.-R., Saff, E.B.: Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle. Int. Math. Res. Not. 2006, 91426 (2006). arXiv:math/0605715v1 CrossRefGoogle Scholar
  48. 48.
    Martínez-Finkelshtein, A., McLaughlin, K.T.-R., Saff, E.B.: Szegő orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319–363 (2006). arXiv:math/0502300v1 MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    McCoy, B.M.: The connection between statistical mechanics and quantum field theory. In: Bazhanov, V.V., Burden, C.J. (eds.) Statistical Mechanics and Field Theory, pp. 26–128. World Scientific, Singapore (1995). arXiv:hep-th/9403084v2 Google Scholar
  50. 50.
    McCoy, B.M., Wu, T.T.: The Two Dimensional Ising Model. Harvard University Press, Cambridge (1973) MATHGoogle Scholar
  51. 51.
    Peschel, I.: On the entanglement entropy for a XY spin chain. J. Stat. Mech. P12005 (2004). arXiv:cond-mat/0410416v1
  52. 52.
    Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970) Google Scholar
  53. 53.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935) CrossRefADSGoogle Scholar
  54. 54.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935) CrossRefADSGoogle Scholar
  55. 55.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 844–849 (1935) CrossRefADSGoogle Scholar
  56. 56.
    Schrödinger, E.: The present situation in quantum mechanics. Proc. Am. Philos. Soc. 124, 323–338 (1935). http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html (translated by John D. Trimmer) Google Scholar
  57. 57.
    Shiroishi, M., Takahahsi, M., Nishiyama, Y.: Emptiness formation probability for the one-dimensional isotropic XY model. J. Phys. Soc. Jpn. 70, 3535–3543 (2001). arXiv:cond-mat/0106062v2 MATHCrossRefADSGoogle Scholar
  58. 58.
    Abanov, A.G., Franchini, F.: Emptiness formation probability for the anisotropic XY spin chain in a magnetic field. Phys. Lett. A 316, 342–349 (2003). arXiv:cond-mat/0307001v1 MATHCrossRefADSGoogle Scholar
  59. 59.
    Szegő, G.: Orthogonal Polynomials. AMS Colloquium Publ., vol. 23. AMS, New York (1959) Google Scholar
  60. 60.
    Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994) MATHCrossRefMathSciNetADSGoogle Scholar
  61. 61.
    Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). arXiv:quant-ph/0211074v1 CrossRefADSGoogle Scholar
  62. 62.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
  63. 63.
    Widom, H.: Toeplitz determinants with singular generating functions. Am. J. Math. 95, 333–383 (1973) MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Widom, H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 13, 284–322 (1974) MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Widom, H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 21, 1 (1976) MATHCrossRefMathSciNetADSGoogle Scholar
  66. 66.
    Widom, H.: On the limit of block Toeplitz determinants. Proc. Am. Math. Soc. 50, 167–173 (1975) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Indiana University, Purdue University IndianapolisIndianapolisUSA
  2. 2.C.N. Yang Institute for Theoretical Physics, State University of New York at Stony BrookStony BrookUSA

Personalised recommendations