Advertisement

Area Distribution of Two-Dimensional Random Walks on a Square Lattice

  • Stefan Mashkevich
  • Stéphane Ouvry
Article

Abstract

The algebraic area probability distribution of closed planar random walks of length N on a square lattice is considered. The generating function for the distribution satisfies a recurrence relation in which the combinatorics is encoded. A particular case generalizes the q-binomial theorem to the case of three addends. The distribution fits the Lévy probability distribution for Brownian curves with its first-order 1/N correction quite well, even for N rather small.

Keywords

Random walks q-binomials 

References

  1. 1.
    Lévy, P.: Processus Stochastiques et Mouvements Browniens. Gauthier-Villars, Paris (1965). Proceedings Second Berkeley Symposium on Mathematical Statistics and Probability, p. 171. University of California Press, Berkeley (1951) Google Scholar
  2. 2.
    Brereton, M.G., Butler, C.: J. Phys. A Math. Gen. 20, 3955 (1987) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Khandekar, D.C., Wiegel, F.W.: J. Phys. A Math. Gen. 21, L563 (1988) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Samokhin, K.V.: Phys. Rev. E 59, R2501 (1999) CrossRefADSGoogle Scholar
  5. 5.
    Jonsson, T., Wheater, J.F.: J. Stat. Phys. 92, 713 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Desbois, J., Comtet, A.: J. Phys. A Math. Gen. 25, 3097 (1992) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Comtet, A., Desbois, J., Ouvry, S.: Nucl. Phys. B 453, 759 (1995) CrossRefADSGoogle Scholar
  8. 8.
    Borisenko, O.A.: Private communication Google Scholar
  9. 9.
    Bellissard, J., Camacho, C., Barelli, A., Claro, F.: J. Phys. A Math. Gen. 30, L707 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Harper, P.G.: Proc. Phys. Soc. Lond. A 68, 874 (1955) MATHCrossRefADSGoogle Scholar
  11. 11.
    Harper, P.G.: Proc. Phys. Soc. Lond. A 68, 879 (1955) MATHCrossRefADSGoogle Scholar
  12. 12.
    Hofstadter, D.R.: Phys. Rev. B 14, 2239 (1976) CrossRefADSGoogle Scholar
  13. 13.
    Mingo, J.A., Nica, A.: J. Comb. Theory A 84, 55 (1998) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Béguin, C., Valette, A., Zuk, A.: J. Geom. Phys. 21, 337 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Andrews, G.E.: q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, p. 10. Am. Math. Soc., Providence (1986) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.SchrödingerNew YorkUSA
  2. 2.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  3. 3.Laboratoire de Physique Théorique et Modèles Statistiques, CNRS-Paris Sud, UMR 8626Université Paris-SudOrsayFrance

Personalised recommendations