Advertisement

Journal of Statistical Physics

, Volume 136, Issue 4, pp 785–805 | Cite as

Bessel Process and Conformal Quantum Mechanics

  • M. A. Rajabpour
Article

Abstract

Different aspects of the connection between the Bessel process and the conformal quantum mechanics (CQM) are discussed. The meaning of the possible generalizations of both models is investigated with respect to the other model, including self adjoint extension of the CQM. Some other generalizations such as the Bessel process in the wide sense and radial Ornstein-Uhlenbeck process are discussed with respect to the underlying conformal group structure.

Keywords

Bessel Process Conformal quantum mechanics Self adjoint extension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, New York (1999) MATHGoogle Scholar
  2. 2.
    Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhauser, Basel-Boston-Berlin (2002) MATHGoogle Scholar
  3. 3.
    Schramm, O.: Isr. J. Math. 128, 221 (2000) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cox, J.C., Ingersoll, J.E., Ross, S.A.: Econometrica 53, 385–407 (1985) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Nelson, E.: Phys. Rev. 150, 1079–1085 (1966) CrossRefADSGoogle Scholar
  6. 6.
    Calogero, F.: J. Math. Phys. 10, 2191 (1969) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Calogero, F.: J. Math. Phys. 10, 2197 (1969) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Calogero, F.: J. Math. Phys. 12, 419 (1971) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Olshanetsky, M.A., Perelomov, A.M.: Phys. Rep. 71, 313–400 (1981) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Phys. Lett. A 311, 87 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Nucl. Phys. B 659, 437 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    de Alfaro, V., Fubini, S., Furlan, G.: Il Nuovo Cimento A 34, 569–612 (1976) CrossRefADSGoogle Scholar
  13. 13.
    Callan, C.G., Coleman, S., Jackiw, R.: A new improved energy-momentum tensor. Ann. Phys. (NY) 59, 42 (1970) MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Jackiw, R.: Introducing scale symmetry. Phys. Today 25, 23 (1972) CrossRefGoogle Scholar
  15. 15.
    Claus, P., Derix, M., Kallosh, R., Kumar, J., Townsend, P.K., Van Proeyen, A.: Phys. Rev. Lett. 81, 4553 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Gibbons, G.W., Townsend, P.K.: Phys. Lett. B 454, 187 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Camblong, H.E., Epele, L.N., Fanchiotti, H., Garcia Canal, C.A.: Phys. Rev. Lett. 87, 220402 (2001). arXiv:hep-th/0106144 CrossRefADSGoogle Scholar
  18. 18.
    Lawler, G.F.: Commun. Math. Phys. 86, 539–554 (1982) MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Göing-Jaeschke, A., Yor, M.: A survey and some generalizations of Besel processses. ETH Zürich Google Scholar
  20. 20.
    Case, K.M.: Phys. Rev. 80, 797–806 (1950) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Frank, W.M., Land, D.J., Spector, R.M.: Rev. Mod. Phys. 43, 36–98 (1971) CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Hutson, V.C.L., Pym, J.S.: Application of Functional Analysis and Operator Theory. Academic Press, San Diego (1980) Google Scholar
  23. 23.
    Basu-Mallick, B., Gupta, K.S.: Phys. Lett. A 292, 36–42 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Essin, A.M., Griffiths, D.J.: Am. J. Phys. 74, 109–117 (2006) CrossRefGoogle Scholar
  25. 25.
    Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Nucl. Phys. B 659, 437–457 (2003). arXiv:hep-th/0207040 MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Ananos, G.N.J., Camblong, H.E., Ordonez, C.R.: Phys. Rev. D 68, 025006 (2003). arXiv:hep-th/0302197 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Camblong, H.E., Ordonez, C.R.: Phys. Rev. D 68, 125013 (2003). arXiv:hep-th/0303166 CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Jackiw, R.: Delta-function potentials in two- and three-dimensional quantum mechanics. In Ali, A., Hoodbhoy, P. (eds.) M.A.B. Beg Memorial Volume. World Scientific, Singapore (1991) Google Scholar
  29. 29.
    Friedman, C.: J. Funct. Anal. 10, 346 (1972) MATHCrossRefGoogle Scholar
  30. 30.
    Clark, T.E., Menikoff, R., Sharp, D.H.: Phys. Rev. D 22, 3012–3016 (1980) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Farhi, E., Gutmann, S.C.: Int. J. Mod. Phys. A 5, 3029 (1990) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Carreau, M., Farhi, E., Gutmann, S., Mende, P.F.: Ann. Phys. (NY) 204, 186–207 (1990) MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Linetsky, V.: J. Appl. Probab. 41(2), 327–344 (2004) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Watanabe, S., Wahrsch, Z.: Verw. Geb. 31, 115–124 (1975) MATHCrossRefGoogle Scholar
  35. 35.
    Rogers, L.C.G., Pitman, J.W.: Ann. Probab. 9, 573–582 (1981) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lawi, S.: arXiv:math-PR/0506013
  37. 37.
    Heston, S.L.: Rev. Financ. Stud. 6(2), 327–343 (1993) CrossRefGoogle Scholar
  38. 38.
    Falomir, H., Pisani, P.A.G., Wipf, A.: J. Phys. A 35, 5427–5444 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Morse, P.M.: Phys. Rev. 34, 57 (1929) CrossRefADSGoogle Scholar
  40. 40.
    Pauling, L., Wilson, E.B.: Introduction to Quantum Mechanics with Applications to Chemistry. Dover, New York (1985) Google Scholar
  41. 41.
    Jensen, P.: Mol. Phys. 98, 1253 (2000) CrossRefADSGoogle Scholar
  42. 42.
    Cooper, I.L., Gupta, R.K.: Phys. Rev. A 52, 941 (1995) CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Gerry, C.C.: Phys. Rev. A 33, 2207 (1986) CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Bessis, N., Bessis, G.: Phys. Rev. A 50, 4506 (1994) CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Ikedaa, N., Matsumoto, H.: J. Funct. Anal. 163, 63–110 (1999) CrossRefMathSciNetGoogle Scholar
  46. 46.
    Fay, J.D.: J. Reine Angew. Math. 293, 143 (1977) MathSciNetGoogle Scholar
  47. 47.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, San Diego (1975), vol. I and II MATHGoogle Scholar
  48. 48.
    Feller, W.: Ann. Math. 55, 468–519 (1952) CrossRefMathSciNetGoogle Scholar
  49. 49.
    Ito, K., McKean Jr., H.P.: Diffusion Processes and their Sample Paths. Springer, Berlin (1965) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Dip. di Fisica Teorica and INFNUniversità di TorinoTorinoItaly

Personalised recommendations