Journal of Statistical Physics

, Volume 135, Issue 5–6, pp 951–975 | Cite as

Energy Conversion by Molecular Motors Coupled to Nucleotide Hydrolysis

  • Reinhard Lipowsky
  • Steffen Liepelt
  • Angelo Valleriani
Open Access


Recent theoretical work on the energy conversion by molecular motors coupled to nucleotide hydrolysis is reviewed. The most abundant nucleotide is provided by adenosine triphosphate (ATP) which is cleaved into adenosine diphosphate (ADP) and inorganic phosphate. The motors have several catalytic domains (or active sites), each of which can be empty or occupied by ATP or ADP. The chemical composition of all catalytic domains defines distinct nucleotide states of the motor which form a discrete state space. Each of these motor states is connected to several other states via chemical transitions. For stepping motors such as kinesin, which walk along cytoskeletal filaments, some motor states are also connected by mechanical transitions, during which the motor is displaced along the filament and able to perform mechanical work. The different motor states together with the possible chemical and mechanical transitions provide a network representation for the chemomechanical coupling of the motor molecule. The stochastic motor dynamics on these networks exhibits several distinct motor cycles, which represent the dominant pathways for different regimes of nucleotide concentrations and load force. For the kinesin motor, the competition of two such cycles determines the stall force, at which the motor velocity vanishes and the motor reverses its direction of motion. In general, kinesin is found to be governed by the competition of three distinct chemomechanical cycles. The corresponding network representation provides a unified description for all motor properties that have been determined by single molecule experiments.


Chemomechanical coupling Molecular motor cycles Energy balance relations Entropy production Stochastic motor dynamics 


  1. 1.
    Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. Garland, New York (1998) Google Scholar
  2. 2.
    Schliwa, M. (ed.): Molecular Motors. Wiley-VCH, Weinheim (2003) Google Scholar
  3. 3.
    Liepelt, S., Lipowsky, R.: Kinesin’s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102 (2007) CrossRefADSGoogle Scholar
  4. 4.
    Valleriani, A., Liepelt, S., Lipowsky, R.: Dwell time distributions for kinesin’s mechanical steps. EPL 82, 28011 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Liepelt, S., Lipowsky, R.: Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes. EPL 77, 50002 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Lipowsky, R., Liepelt, S.: Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditions. J. Stat. Phys. 130, 39–67 (2008) CrossRefADSMathSciNetMATHGoogle Scholar
  7. 7.
    Svoboda, K., Schmidt, Ch.F., Schnapp, B.J., Block, St.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993) CrossRefADSGoogle Scholar
  8. 8.
    Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004) CrossRefADSGoogle Scholar
  9. 9.
    Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005) CrossRefADSGoogle Scholar
  10. 10.
    Schnitzer, M.J., Block, St.M.: Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997) CrossRefADSGoogle Scholar
  11. 11.
    Hackney, D.D.: The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. PNAS 102, 18338–18343 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Gilbert, S.P., Moyer, M.L., Johnson, K.A.: Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998) CrossRefGoogle Scholar
  13. 13.
    Romberg, L., Vale, R.D.: Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993) CrossRefADSGoogle Scholar
  14. 14.
    Crevel, I., Lockhart, A., Cross, R.A.: Weak and strong states of kinesin and ncd. J. Mol. Biol. 257, 66–76 (1996) CrossRefGoogle Scholar
  15. 15.
    Guydosh, N.R., Block, S.M.: Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Nat. Acad. Sci. USA 103, 8054–8059 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999) CrossRefADSGoogle Scholar
  17. 17.
    Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002) CrossRefGoogle Scholar
  18. 18.
    Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000) CrossRefGoogle Scholar
  19. 19.
    Schief, W.R., Clark, R.H., Crevenna, A.H., Howard, J.: Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. PNAS 101, 1183–1188 (2004) CrossRefADSGoogle Scholar
  20. 20.
    Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990) CrossRefADSGoogle Scholar
  21. 21.
    Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics, 1st edn. Springer, New York (1989) Google Scholar
  22. 22.
    Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldmann, Y.E., Selvin, P.R.: Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003) CrossRefADSGoogle Scholar
  23. 23.
    Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R., Molloy, J.E.: The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2002) CrossRefGoogle Scholar
  24. 24.
    Cappello, G., Pierobon, P., Symonds, C., Busoni, L., Gebhardt, J., Rief, M., Prost, J.: Myosin V stepping mechanism. Proc. Nat. Acad. Sci. USA 104, 15328–15333 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Lipowsky, R.: Universal aspects of the chemo-mechanical coupling for molecular motors. Phys. Rev. Lett. 85, 4401–4404 (2000) CrossRefADSGoogle Scholar
  26. 26.
    Lipowsky, R., Jaster, N.: Molecular motor cycles: from ratchets to networks. J. Stat. Phys. 110, 1141–1167 (2003) CrossRefMATHGoogle Scholar
  27. 27.
    Schmiedl, T., Seifert, U.: Stochastic thermodynamics of chemical reaction networks. Phys. Rev. E 126, 044101 (2007) Google Scholar
  28. 28.
    Andrieux, D., Gaspard, P.: Temporal disorder and fluctuation theorem in chemical reactions. Phys. Rev. E 77, 031137 (2008) CrossRefADSGoogle Scholar
  29. 29.
    Alberty, R.A.: Thermodynamics of the hydrolysis of ATP as a function of temperature, pH, pMg, and ionic strength. J. Phys. Chem. B 107, 12324–12330 (2003) CrossRefGoogle Scholar
  30. 30.
    Seifert, U.: Fluctuation theorem for a single enzym or molecular motor. Europhys. Lett. 70, 36–41 (2005) CrossRefADSGoogle Scholar
  31. 31.
    Evans, D.J., Cohen, E.G.D., Morris, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993) CrossRefADSMATHGoogle Scholar
  32. 32.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999) CrossRefADSGoogle Scholar
  33. 33.
    Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999) CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000) CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Liepelt, S., Lipowsky, R.: Operation modes of the molecular motor kinesin. Phys. Rev. E 79, 011917 (2009) CrossRefADSGoogle Scholar
  36. 36.
    King, St.J., Schroer, T.A.: Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000) CrossRefGoogle Scholar
  37. 37.
    Mehta, A.D., Rock, R.S., Rief, M., Spudich, J.A., Mooseker, M.S., Cheney, R.E.: Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999) CrossRefADSGoogle Scholar
  38. 38.
    Ökten, Z., Churchman, L.S., Rock, R.S., Spudich, J.A.: Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol. 11, 884–887 (2004) CrossRefGoogle Scholar
  39. 39.
    Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S., Müller, M.J.I.: Molecular motor traffic: from biological nanomachines to macroscopic transport. Physica A 372, 34–51 (2006) CrossRefADSGoogle Scholar
  40. 40.
    Müller, M.J.I., Klumpp, S., Lipowsky, R.: Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Nat. Acad. Sci. USA 105, 4609–4614 (2008) CrossRefADSGoogle Scholar
  41. 41.
    Klumpp, S., Lipowsky, R.: Cooperative cargo transport by several molecular motors. Proc. Nat. Acad. Sci. USA 102, 17284–17289 (2005) CrossRefADSGoogle Scholar
  42. 42.
    Vershinin, M., Carter, B.C., Razafsky, D.S., King, S.J., Gross, S.P.: Multiple-motor based transport and its regulation by Tau. Proc. Nat. Acad. Sci. USA 104, 87–92 (2007) CrossRefADSGoogle Scholar
  43. 43.
    Beeg, J., Klumpp, S., Dimova, R., Gracia, R.S., Unger, E., Lipowsky, R.: Transport of beads by several kinesin motors. Biophys. J. 94, 532–541 (2008) CrossRefGoogle Scholar
  44. 44.
    Welte, M.A., Gross, S.P.: Molecular motors: a traffic cop within? HFSP J. 2, 178–182 (2008) CrossRefGoogle Scholar
  45. 45.
    Müller, M.J.I., Klumpp, S., Lipowsky, R.: Motility states of molecular motors engaged in a stochastic tug-of-war. J. Stat. Phys. 133, 1059–1081 (2008) CrossRefADSMathSciNetMATHGoogle Scholar
  46. 46.
    Lipowsky, R., Klumpp, S.: Life is motion—multiscale motility of molecular motors. Physica A 352, 53–112 (2005) CrossRefADSGoogle Scholar
  47. 47.
    Lipowsky, R., Beeg, J., Dimova, R., Klumpp, S., Liepelt, S., Müller, M.I.J., Valleriani, A.: Active bio-systems: from single motor molecules to cooperative cargo transport. Biophys. Rev. Lett. (2009, in press) Google Scholar
  48. 48.
    Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571–585 (1976) CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Luo, J.L., van den Broeck, C., Nicolis, G.: Stability criteria and fluctuations around non-equilibrium states. Z. Phys. B 56, 165–170 (1984) CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Maes, Ch., van Wieren, M.H.: A Markov model for kinesin. J. Stat. Phys. 112, 329–355 (2003) CrossRefMATHGoogle Scholar
  51. 51.
    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985) MATHGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Reinhard Lipowsky
    • 1
  • Steffen Liepelt
    • 1
  • Angelo Valleriani
    • 1
  1. 1.Theory and Bio-SystemsMax–Planck–Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations