Advertisement

Journal of Statistical Physics

, Volume 134, Issue 2, pp 401–423 | Cite as

Representation of Nonequilibrium Steady States in Large Mechanical Systems

  • Teruhisa S. Komatsu
  • Naoko Nakagawa
  • Shin-Ichi Sasa
  • Hal Tasaki
Open Access
Article

Abstract

Recently a novel concise representation of the probability distribution of heat conducting nonequilibrium steady states was derived. The representation is valid to the second order in the “degree of nonequilibrium”, and has a very suggestive form where the effective Hamiltonian is determined by the excess entropy production. Here we extend the representation to a wide class of nonequilibrium steady states realized in classical mechanical systems where baths (reservoirs) are also defined in terms of deterministic mechanics. The present extension covers such nonequilibrium steady states with a heat conduction, with particle flow (maintained either by external field or by particle reservoirs), and under an oscillating external field. We also simplify the derivation and discuss the corresponding representation to the full order.

Keywords

Nonequilibrium steady state Probability distribution Excess entropy production 

References

  1. 1.
    Sasa, S., Tasaki, H.: J. Stat. Phys. 125, 125 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, New York (1985) Google Scholar
  3. 3.
    Mclennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, New York (1990) Google Scholar
  4. 4.
    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974) Google Scholar
  5. 5.
    Kawasaki, K., Gunton, J.D.: Phys. Rev. A 8, 2048–2064 (1973) CrossRefADSGoogle Scholar
  6. 6.
    Evans, D.J., Cohen, E.G.D., Morris, G.P.: Phys. Rev. Lett. 71, 2401 (1993) MATHCrossRefADSGoogle Scholar
  7. 7.
    Gallavotti, G., Cohen, E.G.D.: Phys. Rev. Lett. 74, 2694 (1995) CrossRefADSGoogle Scholar
  8. 8.
    Kurchan, J.: J. Phys. A: Math. Gen. 31, 3719 (1998) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Maes, C.: J. Stat. Phys. 95, 367 (1999) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Crooks, G.E.: Phys. Rev. E 61, 2361 (2000) CrossRefADSGoogle Scholar
  11. 11.
    Jarzynski, C.: J. Stat. Phys. 98, 77 (2000) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Maes, C., Netočný, K.: J. Stat. Phys. 110, 269 (2003) MATHCrossRefGoogle Scholar
  13. 13.
    Komatsu, T.S., Nakagawa, N.: Phys. Rev. Lett. 100, 030601 (2008). arXiv:0708.3158 CrossRefADSGoogle Scholar
  14. 14.
    Komatsu, T.S., Nakagawa, N., Sasa, S., Tasaki, H.: Phys. Rev. Lett. 100, 230602 (2008). arXiv:0711.0246 CrossRefADSGoogle Scholar
  15. 15.
    Oono, Y., Paniconi, M.: Prog. Theor. Phys. Suppl. 130, 29 (1998) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hatano, T., Sasa, S.: Phys. Rev. Lett. 86, 3463 (2001) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Teruhisa S. Komatsu
    • 1
  • Naoko Nakagawa
    • 2
  • Shin-Ichi Sasa
    • 3
  • Hal Tasaki
    • 1
  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan
  2. 2.College of ScienceIbaraki UniversityIbarakiJapan
  3. 3.Department of Pure and Applied SciencesThe University of TokyoTokyoJapan

Personalised recommendations