Journal of Statistical Physics

, Volume 134, Issue 5–6, pp 1097–1119 | Cite as

Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs

  • F. Bonetto
  • J. L. Lebowitz
  • J. Lukkarinen
  • S. Olla


We investigate a class of anharmonic crystals in d dimensions, d≥1, coupled to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat baths, applied at the boundaries in the 1-direction, are at specified, unequal, temperatures T l and T r . The temperatures of the internal baths are determined in a self-consistent way by the requirement that there be no net energy exchange with the system in the non-equilibrium stationary state (NESS). We prove the existence of such a stationary self-consistent profile of temperatures for a finite system and show that it minimizes the entropy production to leading order in (T l T r ). In the NESS the heat conductivity κ is defined as the heat flux per unit area divided by the length of the system and (T l T r ). In the limit when the temperatures of the external reservoirs go to the same temperature T, κ(T) is given by the Green-Kubo formula, evaluated in an equilibrium system coupled to reservoirs all having the temperature T. This κ(T) remains bounded as the size of the system goes to infinity. We also show that the corresponding infinite system Green-Kubo formula yields a finite result. Stronger results are obtained under the assumption that the self-consistent profile remains bounded.


Thermal conductivity Green-Kubo formula Self-consistent thermostats Entropy production Nonequilibrium stationary states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basile, G., Bernardin, C., Olla, S.: A momentum conserving model with anomalous thermal conductivity in low dimension. Phys. Rev. Lett. 96, 204303 (2006) CrossRefADSGoogle Scholar
  2. 2.
    Basile, G., Bernardin, C., Olla, S.: Thermal conductivity for a momentum conserving model. Commun. Math. Phys. (2009). doi: 10.1007/s10955-008-9657-1. Google Scholar
  3. 3.
    Benabou, G.: Homogenization of Ornstein-Uhlenbeck Process in Random Environment. Commun. Math. Phys. 266, 699–714 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bergmann, P.G., Lebowitz, J.L.: New approach to nonequilibrium processes. Phys. Rev. 99, 578–587 (1955) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bernardin, C., Olla, S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121(3/4), 271–289 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Bodineau, T., Lefevere, R.: Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats. J. Stat. Phys. 133, 1–27 (2008) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bolsterli, M., Rich, M., Visscher, W.M.: Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs. Phys. Rev. A 4, 1086–1088 (1970) CrossRefADSGoogle Scholar
  8. 8.
    Bonetto, F., Lebowitz, J.L., Lukkarinen, J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116, 783–813 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., et al. (eds.) Mathematical Physics, pp. 128–150. Imperial College Press, London (2000) Google Scholar
  10. 10.
    Fritz, J.: Stochastic dynamics of two-dimensional infinite-particle systems. J. Stat. Phys. 20(4), 351–379 (1979) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Hairer, M.: A probabilistic argument for the controllability of conservative systems. Preprint (2005)
  12. 12.
    Katz, S., Lebowitz, J.L., Spohn, H.: Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors. J. Stat. Phys. 34, 497–537 (1984) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, New York (1999) MATHGoogle Scholar
  14. 14.
    Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27, 65–74 (1982) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Maes, C., Netočný, K., Verschuere, M.: Heat conduction networks. J. Stat. Phys. 111, 1219–1244 (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipshitz vector fields and degenerate noise. Stoch. Proc. Appl. 101, 185–232 (2002) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mattingly, J.C.: Private communication (2008) Google Scholar
  18. 18.
    Olla, S., Tremoulet, C.: Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles. Commun. Math. Phys. 233, 463–491 (2003) MATHADSMathSciNetGoogle Scholar
  19. 19.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHGoogle Scholar
  20. 20.
    Villani, C.: Hypercoercivity, preprint. URL (2006)

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • F. Bonetto
    • 1
  • J. L. Lebowitz
    • 2
  • J. Lukkarinen
    • 3
    • 4
  • S. Olla
    • 5
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Mathematics and PhysicsRutgers UniversityPiscatawayUSA
  3. 3.Zentrum MathematikTechnische Universität MünchenGarchingGermany
  4. 4.Department of Mathematics and StatisticsUniversity of HelsinkiHelsingin yliopistoFinland
  5. 5.Ceremade, UMR CNRS 7534Université de Paris DauphineParis Cedex 16France

Personalised recommendations